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A B S T R A C T

Partial retrieval is a long-standing problem in the 3D Object Retrieval community. Its
main difficulties arise from how to define 3D local descriptors in a way that makes
them effective for partial retrieval and robust to common real-world issues, such as
occlusion, noise, or clutter, when dealing with 3D data. This SHREC track is based
on the newly proposed ShapeBench benchmark to evaluate the matching performance
of local descriptors. We propose an experiment consisting of three increasing levels of
difficulty, where we combine different filters to simulate real-world issues related to the
partial retrieval task. Our main findings show that classic 3D local descriptors like Spin
Image are robust to several of the tested filters (and their combinations), but more recent
learned local descriptors like GeDI can be competitive for some specific filters. Finally,
no 3D local descriptor was able to successfully handle the hardest level of difficulty.

© 2025 Elsevier B.V. All rights reserved.

1. Introduction1

Finding similar or relevant objects to a given query input is a2

fundamental task in multimedia databases. An exact search in3

this context is, in general, meaningless because two objects in4

the dataset are identical only in the case where they are digital5

copies. Two models obtained from the same source (e.g., by 3D6

scanning the same object twice) will result in different but simi-7

lar models. In addition to retrieval, similarity search algorithms8

can be used to implement multimedia mining tasks such as clus-9

tering and classification. Thus, it is relevant to study effective10

methods for representing and searching multimedia objects.11
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Fig. 1: An example of a partial view from a scene. Note the missing
parts on the models.

Among similarity search problems, one of particular interest 12

is the partial retrieval on 3D models. In this task, usually the 13

query input is a partial 3D view, and the problem is to find the 14

corresponding part in a complete or partial 3D model or 3D 15

scene. Figure 1 shows an example of a partial scene. The partial 16

retrieval task is known to be difficult and complex, as previous 17

SHREC tracks on this problem have shown [1, 2]. 18

Practically all real-world 3D captures contain some degree 19

of occlusion, and it is as such one of the most common chal- 20
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lenges encountered by 3D shape retrieval and recognition meth-1

ods. The advent of learning-based methods for this task has the2

opportunity to improve upon the state of the art, and has as of3

yet not received much attention from the machine learning com-4

munity. Thus, a systematic benchmarking methodology on this5

topic is both relevant and timely. Unfortunately, testing the ro-6

bustness of a given 3D shape retrieval method to various scenar-7

ios under which varying degrees of partiality occur is difficult8

to accomplish using real-world 3D captures. These captures in-9

herently contain various types of noise and capturing artefacts.10

It is furthermore difficult to achieve quantitative results due to11

the time and storage requirements for such individual captures.12

This SHREC track builds upon the ShapeBench benchmark13

introduced in previous work [3], which proposed a replicable14

and scalable methodology for evaluating local 3D shape de-15

scriptors. While the original work focused on controlled com-16

parisons of descriptor robustness using synthetic variations ap-17

plied exclusively to the scene object, our SHREC track signifi-18

cantly extends this evaluation. First, we simulate more realistic19

and challenging retrieval scenarios by introducing multi-filter20

pipelines and by applying distortions to both the model and the21

scene. Second, we introduce a structured notion of difficulty22

levels, enabling a progressive assessment of descriptor robust-23

ness. Third, we include and evaluate several new descriptors,24

including recent learning-based methods, and analyze their ex-25

ecution times under controlled geometric conditions. Finally,26

we adapt and optimize the benchmark infrastructure for test-27

ing Python-based methods, thus broadening accessibility and28

enabling the inclusion of deep learning descriptors. Together,29

these extensions make our benchmark a more comprehensive30

and realistic testbed for the partial 3D retrieval task.31

Seven teams registered for this SHREC track, but only three32

teams submitted results for evaluation: Ivan Sipiran from U. of33

Chile [Team 1], Isaac Aguirre from U. of Chile [Team 2], and34

Bart Iver van Blokland from NTNU [Team 3].35

2. The ShapeBench benchmark36

This section introduces the ShapeBench benchmark, the37

dataset used for the benchmark, the evaluation metric, and the38

combinations of filters selected for this SHREC track.39

2.1. The benchmark40

ShapeBench [3] is a recent methodology for evaluating local41

3D shape descriptors. It evaluates the ability of a descriptor to42

determine that two surface points are similar under various real-43

world conditions. These include clutter, occlusion, and noise.44

The benchmark measures this by matching corresponding45

points on two copies of the same object (for historical reasons46

referred to as the “model” and “scene” object), where the afore-47

mentioned adverse conditions are simulated by modifying the48

scene object using a sequence of filters. Each filter applies a49

procedural modification to the object. A tested method must50

subsequently correctly identify matching pairs of correspond-51

ing model and scene points, where model points are hidden52

among a large set of random points on other objects. All ob-53

jects are taken from a set of 790,635 triangle meshes from the54

Objaverse dataset [4].55

This track instead applies filters to both objects, creating 56

a more realistic testing environment. We further extend the 57

benchmark by integrating support for methods implemented in 58

the Python language, which simplifies testing methods utilizing 59

machine learning. The estimation of occlusion and clutter has 60

also been reworked to be faster, in some cases reducing the total 61

execution time of a single benchmark run by several hours. 62

The Descriptor Distance Index (DDI) [3] is used as the pri- 63

mary metric to evaluate the efficacy of a given method in per- 64

forming these recognition tasks. Let δ be the dissimilarity func- 65

tion defined over a given 3D local descriptor. Let m be the 66

matching point in the model object, and let s be the match- 67

ing point in the scene object. Given a set of R random surface 68

points from the dataset, the DDI accumulates the number of 69

points r ∈ R such that δ(m, r) < δ(m, s), i.e., the DDI counts 70

how many random points were considered a better match, i.e., 71

at a lower distance, for m than s, which is the known match. 72

The final DDI score for the 3D local descriptor is the sum of 73

all these values for all selected pairs of points (m, s). We also 74

measure the execution times of the evaluated methods. 75

2.2. Filters 76

A filter is a transformation applied on an object. As stated, 77

the purpose of filters is to simulate real-world issues while per- 78

forming retrieval tasks on digitized objects or scenes. First, we 79

define some terms that will be used for describing the filters: 80

• Support volume: The region (usually a cylinder or sphere) 81

that contains all the shape information used to compute a 82

local shape descriptor. 83

• Support radius: The size of the support volume of a local 84

shape descriptor. 85

• Independent variable: The variable being varied in each 86

filter, to test its effect on the DDI of a local descriptor. 87

For the evaluation of local 3D shape descriptors in this track, 88

we use ShapeBench with combinations of the following filters: 89

• Occlusion: This filter chooses a random viewing direction 90

from which the scene is viewed, and removes all geometry 91

that is not visible from that point of view. The independent 92

variable is the area of the remaining mesh that intersects 93

the support volume divided by the area of the unmodified 94

mesh intersecting the support volume. Figure 2a shows an 95

example of the application of this filter. 96

• Clutter: A physics simulator randomly places objects on 97

top of the input scene, simulating how they collide with 98

other objects and how gravity affects them. The indepen- 99

dent variable is the area of clutter objects that intersects the 100

support volume, divided by the area intersecting the sup- 101

port volume that belongs to the object being recognized. 102

Figure 2b shows an example of the result of this filter. 103

• Gaussian noise: Simulates various sources of noise intro- 104

duced in the capture process. This filter displaces the po- 105

sition of all vertices by a distance that follows a normal 106
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a)

b)

c)

d)

Fig. 2: Illustration of the effects of individual filters. The model object is on
the left, and the scene is on the right. From top to bottom, the effects of the
occlusion, clutter, Gaussian noise, and vertex perturbation filters are shown.

distribution, using a fixed value for the standard deviation.1

The independent variable is the standard deviation of the2

noise function. Figure 2c shows an example of this filter.3

• Vertex Perturbation: Simulates capturing the mesh mul-4

tiple times by displacing triangle vertices, while keeping5

the mesh’s overall shape intact. The independent variable6

is the distance to the closest corresponding vertex in the7

modified mesh. An example is shown in Figure 2d.8

2.2.1. Levels of difficulty9

We define three different levels of increasing difficulty for the10

partial retrieval task. Level 1 tests common sources of matching11

inaccuracies in isolation. Level 2 tests combinations of these12

that are often observed in practical applications. Level 3 aims to13

present a combination of these that can be expected in captures14

of real-world environments. Table 1 lists the filter configuration15

on each experiment that is done at each difficulty level. Figure 316

visualises Experiments 4 to 8, and Figure 4 depicts the effects17

of applying the filters as defined in Experiment 9.18

The experiments use variations of the aforementioned filters19

in order to reduce the dimensionality and interpretability of the20

results. Experiments 6, 8, and 9 apply Gaussian noise with a21

fixed standard deviation instead of one chosen at random. Ex-22

periment 9 also applies the clutter filter with only 2 clutter ob-23

jects instead of the usual 10. Finally, when occlusion is applied24

Level # Ex. Filters applied on
model

Filters applied on
scene

Level 1 Ex. 1 Occlusion
Ex. 2 Clutter
Ex. 3 Gaussian noise

Level 2 Ex. 4 Occlusion + Gaus-
sian noise

Ex. 5 Occlusion Occlusion
Ex. 6 Occlusion + Fixed

Gaussian noise
Occlusion + Fixed
Gaussian noise

Ex. 7 Occlusion Occlusion + Clutter
Ex. 8 Occlusion + Fixed

Gaussian noise
Occlusion + Clut-
ter + Fixed Gaus-
sian noise

Level 3 Ex. 9 Occlusion + Two
clutter objects +

Fixed Gaussian
noise + Vertex
perturbation

Table 1: Levels of filtering, and their tested filter configurations

to both the model and the scene, the occlusion fraction of the 25

overlapping area is used as the independent variable. 26

The Descriptor Distance Index (DDI) metric is used by 27

Shapebench [3] to measure the effect of each filter configuration 28

on the matching performance of a local 3D shape descriptor. 29

2.3. Execution Time 30

We have also extended the benchmark with a new process 31

for measuring the execution time of a tested method. Deciding 32

the optimal method to use for 3D shape recognition is often 33

a balance between its matching capabilities, and its execution 34

time. In cases where latency is essential, or processing power is 35

limited, a faster method that is less capable may be desirable. 36

Recent work has predominantly measured the time to gen- 37

erate a single descriptor for a given surface as a function of 38

the support radius [5, 6, 7, 8, 9], though the vertex or triangle 39

count [10, 11, 12], or case studies [13, 14] have also been used. 40

Figure 5 shows observed execution times as a function of the 41

support radius. Figure 5b demonstrates that the execution time 42

can vary by roughly a factor of two for the same radius. This 43

variation is caused by that the time cost for processing a point or 44

triangle that lies within the support volume can be different to 45

that of one which lies outside of it. The location of the support 46

volume varies the proportion of in- and excluded geometry for 47

a given surface, and thus the execution time. Figure 5a shows 48

that this variation disappears when this proportion is constant, 49

as is the case with surface points on a sphere. 50

Understanding the performance characteristics of a method 51

therefore requires measuring the execution time cost of geom- 52

etry inside and outside the support volume separately. This ap- 53

proach deviates from previous work, which has generally dis- 54

regarded the cost of excluding geometry as being something all 55

methods need to do, with the implicit assumption that this cost 56

is approximately the same for all methods. We use synthetic 57

meshes, which allow this proportion to be controlled. 58
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a)

b)

c)

d)

e)

Fig. 3: Illustration of the experiments at Level 2. The model is on the left, and
the scene is on the right. Refer to Table 1 for the filter configurations used. Here
Figures a) to e) correspond to experiments 4 to 8, respectively.

Fig. 4: Illustration of Experiment 9, at Level 3 Occlusion + Two clutter objects
+ Fixed Gaussian noise + Vertex perturbation). The model is on the left, and
the scene is on the right.

The first two of these (type a and b, as shown in Figure 6)1

place meshes at randomly chosen locations inside the support2

volume. What is being varied between these is the distribution3

of the geometry. Type a spreads it out uniformly, while type4

b concentrates it. Type c exclusively places geometry outside5

the support region, with a uniform distribution. Finally, type d6

(not pictured directly) uses a mesh similar to that of type a, but7
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Fig. 5: Scatterplots showing the variation of execution times when com-
puting the SHOT descriptor 25 times for a randomly selected vertex
and support radius. Each input point cloud has 5M points. A heatmap
visualisation is used to highlight clusters of in total 10k sample points.

b)  Inside, non-uniform density

c) All outsidea)  Inside, uniform density
hollow 

Fig. 6: Types of synthetic meshes generated by the benchmark.

does not request the method to generate any descriptors. This 8

allows the estimation of the method’s overhead, assuming its 9

implementation does not have an explicit check for this. 10

For measuring the execution time itself, we limit the run- 11

ning of the descriptor method to a single thread. While de- 12

scriptors would in a practical setting primarily be computed in 13

parallel, we also wish to be able to compare against methods 14

implemented in Python. These are inherently single-threaded. 15

Boosting of the CPU was disabled, and the benchmark thread 16

was locked to a single core through the operating system. The 17

number of descriptors being generated at a time is fixed, and are 18

computed in a single batch. This ensures acceleration structures 19

(if the method uses them) are only computed once per scene. 20

One noteworthy consideration is the observation that triangle 21

and point cloud resolution are somewhat independent of one 22

another. Assuming that uniform surface sampling is used, only 23

the area of a mesh determines the point cloud resolution, not 24

the number of triangles that are used to describe it. The density 25

of triangles can vary greatly across a given mesh, which makes 26

it difficult to compare the execution times of point cloud and 27

triangle based methods directly. 28
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3. Methods1

Among the 3D local descriptors considered in track, the2

GeDI (Section 3.1) and COPS (Section 3.2) methods are3

learning-based methods, while MICI (Section 3.3) is a more tra-4

ditional histogram-based method. In the evaluation we include5

four descriptors used in the original ShapeBench [3]: Spin Im-6

age [15], Radial Intersection Count Image (RICI) [11], Quick7

Intersection Count Change Image (QUICCI) [12], and Signa-8

ture of Histograms of OrienTations (SHOT) descriptor [9].9

3.1. General and Distinctive Learned Descriptors (GeDI)10

(Ivan Sipiran)11

GeDi [16] introduces a learned descriptor for local 3D point12

cloud patches that is compact and distinctive. A patch X ⊂ R3
13

is defined as a set of 3D points within a fixed radius r from14

a central point x̂ in the original point cloud P. To accommo-15

date varying point densities and ensure uniform input size for16

learning, the method performs a random sampling of m points17

per patch, with resampling if fewer points are present. This18

process yields a consistent structure for batch processing and19

model training. To achieve invariance to transformations and20

improve the robustness of the descriptor, the method estimates21

a local reference frame (LRF) using the TOLDI algorithm [17].22

Finally, the method downsamples the path to n < m points for23

computational efficiency.24

The canonicalisation step transforms these sampled points25

to a normalized coordinate frame relative to the patch centre26

and radius. Specifically, points are first rotated into the LRF27

and then normalized for translation and scale invariance. The28

canonicalised point set serves as input to a deep network ΦΘ,29

which learns to produce a descriptor f ∈ Rd with unit norm.30

The network design is based on PointNet++ [18], which uses31

hierarchical receptive fields to capture geometric patterns at32

multiple spatial scales.33

To keep geometric consistency and solve possible inaccura-34

cies in LRF estimation, the method introduces QNet, a spatial35

transformer network that outputs a unit quaternion represent-36

ing a rotation in S O(3). Unlike matrix-based transformation37

networks, QNet inherently produces valid rotations without re-38

quiring additional regularization terms or computationally ex-39

pensive orthogonalization steps. QNet is trained jointly with40

the main descriptor network, providing an efficient and inte-41

grated solution to compensate for canonicalization noise while42

preserving the spatial properties critical for geometric learning.43

The training procedure uses a siamese network architecture44

with shared weights accross branches, processing pairs of corre-45

sponding patches sampled from overlapping regions of different46

point clouds. Descriptors are learned using a hard contrastive47

loss that emphasizes discrimination between matching and non-48

matching patches. Negative sampling is conducted by exclud-49

ing samples within a predefined radius around anchor points,50

ensuring spatial distinctiveness. This training strategy, com-51

bined with randomized patch sampling, promotes robustness,52

supports large minibatch training, and leads to improved gener-53

alization across varying point cloud configurations.54

(a) (b)

Fig. 7: In (a): visualization of the point projection and weighting pro-
cedure, and in (b) approximate visualisation of the weighting of point
samples to the sum being accumulated in each pixel bin of the MICI
descriptor.

(a) Triangle input (RICI) (b) Point cloud input (MICI)

Fig. 8: Descriptors generated using the RICI and MICI methodologies: despite
differing input modalities, approximately equivalent descriptors are produced.

3.2. Comprehensive model for Parts Segmentation 55

(Isaac Aguirre) 56

COPS [19] integrates semantics extracted from visual con- 57

cepts and 3D geometry to effectively identify object parts. It 58

renders a 3D point cloud from multiple viewpoints, deliver- 59

ing the resulting image outputs into DINOv2 [20] to extract 60

high-level features. These features are then backprojected onto 61

the corresponding points in the original point cloud. Finally, a 62

geometry-aware feature aggregation process clusters points into 63

parts and assigns them labels. 64

This procedure can also be used to compute fea- 65

tures/descriptors for each point, and it is expected that geo- 66

metrically similar parts will produce similar outputs. For the 67

experiments, DINOv2 with registers [21] is used, which is an 68

improved version of DINOv2, specifically in its small variant. 69

3.3. Multimodal Intersection Count Image (MICI) 70

(Bart Iver van Blokland) 71

The Multimodal Intersection Count Image (MICI) is an ap- 72

proximation of the previously proposed RICI [11] descriptor. 73

The RICI and MICI methods both aim to compute the number 74

of intersections between a circle described by each pixel in the 75

image, and the surface of an object. Where they differ is that 76

while RICI requires a triangle mesh as input, MICI uses a point 77

cloud (this is the “MICI PointCloud” variant). The combination 78

of the RICI and MICI methods allows triangle meshes and point 79

clouds to be compared across both modalities interchangeably 80

(this is the “MICI Triangle” variant). 81

This can be advantageous in application domains such as bin 82

picking, where it may be necessary to locate a known CAD ob- 83

ject in a 3D scan. Because descriptors can be extracted from 84
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the triangle mesh directly, the lossy step of uniformly sampling1

the mesh into a point cloud can be avoided. The extracted2

descriptors can subsequently be compared to those computed3

from points in a point cloud captured by a 3D scanner.4

To estimate the intersection count per bin, MICI accumulates5

points from the input point cloud onto a plane subdivided into6

a grid of pixels. A visual representation of this procedure is7

shown in Figure 7(a). A descriptor is computed for the point8

S and surface normal S n. A point P with surface normal Pn9

is projected in cylindrical coordinate space onto the descriptor,10

yielding point I that determines which pixel P contributes to.11

Two factors weigh the contribution. The first of which is12

a 2D Gaussian function whose mean is centered in the corre-13

sponding pixel and has a standard deviation of 0.1. This aims14

to focus the contributions close to where the circles used by the15

original RICI descriptors would be. These Gaussian weights16

are visualised in Figure 7(b). The second weighting factor is17

the cosine of the angle θ between the circle tangent T and in-18

put point cloud normal vector Pn. For a given surface, as the19

angle between these vectors decreases, more points will be en-20

countered in the proximity of the circle. Reducing the weight of21

these by the cosine accounts for this. The combination of these22

factors results, under ideal conditions, in a descriptor that is vi-23

sually nearly indistinguishable from a similar one computed for24

a triangle mesh, as is shown in Figure 8.25

All point contributions are accumulated in a 2D histogram.26

The final step in the feature extraction process is to convert the27

accumulated floating point values into a discrete number of in-28

tersections. This is done by dividing the contents of each bin29

by a constant factor c that depends on the density of the input30

point cloud, and thus the method and settings by which the point31

cloud is acquired. For this benchmark, we determined c experi-32

mentally as the factor that minimises the difference between all33

nonzero bins for the same descriptor computed using the MICI34

and RICI method for a large set of sample descriptors.35

4. Results and discussions36

The results of the experiments defined in Table 1 are now37

presented for all participating methods. For these results, the38

following parameters have been used:39

• Parameters for filters:40

– Fixed Gaussian noise: standard deviation of 0.001.41

– Vertex perturbation (alternate triangulation in the42

original): same as original ShapeBench [3].43

– Multi-view occlusion: angle between viewpoints44

varies between 0 and 90 degrees.45

– For Experiment 9, the number of clutter objects was46

reduced to 2 instead of the usual 10 for a clutter filter.47

• Parameters for methods:48

– QUICCI: support radius 0.39.49

– RICI: support radius 0.255.50

– SHOT: support radius 0.15.51

– COPS: support radius 0.5 (for training). 52

– GeDI: support radius 0.5 (for training). 53

– Spin image: support radius 0.81. 54

– MICI: Level threshold set to 166.6, support radius 55

was 0.5 (MICI Triangle was also run at this support 56

radius to be able to compare maximum achievable 57

performance vs point cloud performance). 58

One other parameter of note is that vertex counts of point 59

clouds provided to GeDI and COPS by the benchmark were 60

scaled to 10% and 5%, respectively. Running both of these 61

methods at full resolution proved intractably slow. The refer- 62

ence descriptor set of COPS was also limited to 250,000 de- 63

scriptors for a similar reason. The latter does cause some prob- 64

lems with comparing its performance to other methods. How- 65

ever, based on experience the DDI=0 line should approximately 66

be correct, but other subdivisions may shift had the full reso- 67

lution been used instead. While this measure provides these 68

methods with less information, we believe any practical appli- 69

cation of them would require similar measures. Comparisons to 70

other methods should therefore be possible. 71

4.1. Level 1 experiments 72

The first level investigates the effect of specific adverse con- 73

ditions in isolation of others, where each experiment applies 74

a single filter. For each experiment, the observed effect on 75

the DDI metric is shown for each tested method. The colours 76

show the distribution of DDI values, with green representing 77

DDI = 0. A higher proportion of low DDI values corresponds 78

to a more effective local descriptor. Therefore, the greener the 79

chart, the more effective the local descriptor is. Each chart 80

also contains the commonly used Area under Precision-Recall 81

curves (AUC) metric. 82
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Fig. 9: Results for Experiment 1 (Occlusion). Figure 9i shows the number of
sample points per histogram bin.
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Fig. 10: Results for Experiment 2 (Clutter). Figure 10i shows the number of
sample points per histogram bin.
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Fig. 11: Results for Experiment 3 (Gaussian Noise). Figure 11i shows the
number of sample points per histogram bin.

The effects of occlusion are shown in Figure 9. The Spin Im-1

age, RICI, and QUICCI outperformed the other methods. GeDI2

and SHOT rely on point cloud neighbourhoods for their shape3

representation, which are degraded by the filter. Visual descrip-4

tors like COPS are also not robust to geometrical occlusion.5

The results for clutter can be seen in Figure 10. Here MICI6

Triangle and RICI outperform the other methods, followed by7

QUICCI. These descriptors were specifically designed to be ro-8

bust to clutter, which is evident here. The other methods show9

little to no ability to resist clutter.10

When subjected to normally distributed vertex perturbations,11
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Fig. 12: Heatmaps of results for experiment 4 (Occlusion + Gaussian noise).
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Fig. 13: Line curves of results for experiment 4 (Occlusion + Gaussian noise).

Figure 11 shows that the Spin Image is the most robust in this 12

test. This can be explained by its subdivision of contributions 13

of incoming vertices having a smoothing effect, and large sup- 14

port radius. In contrast, SHOT has impressive performance de- 15

spite its small support radius. Learned neural networks work 16

as smoothed regression functions, which could explain their ro- 17

bustness to noise. COPS may also benefit here from that visual 18
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Fig. 14: Results for Experiment 5 (occlusion on both meshes). Figure 14i shows
the number of sample points per histogram bin.
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Fig. 15: Results for Experiment 6 (occlusion and Gaussian noise on both
meshes). Figure 15i shows the number of sample points per histogram bin.

features are independent to geometrical noise. Finally, QUICCI1

and RICI are more susceptible to changes in the geometry, and2

thus they obtain worse results compared to the other methods.3

4.2. Level 2 experiments4

The second level experiments investigate the effect of combi-5

nations of filters. Two sets of plots (heatmaps and line curves)6

are computed for each experiment, showing the same results7

from different perspectives. To simplify visualisation, these8

charts focus on the fraction of cases where the DDI = 0. In the9

heatmaps, this proportion is represented by a colour map, where10

green indicates a proportion equal to 1 (the optimal result). The 11

line charts group results by their values on the vertical axis. 12
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Fig. 16: Results for Experiment 7 (occlusion on both objects, clutter in scene).
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Fig. 17: Results for Experiment 7 (occlusion on both objects, clutter in scene).

When Occlusion is combined with Gaussian noise, Fig- 13

ures 12 and 13 show that the Spin Image obtains the best results, 14

followed by MICI (both versions). As Spin Image behaves well 15

in both filters separately, one would expect it to have good ro- 16

bustness to both filters. GeDI also shows some robustness for 17
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low levels of noise and occlusion, which is also inherited from1

its robustness to Gaussian noise.2

Experiments 5 and 6 both apply an occlusion filter on the3

model and scene objects, but ensure the maximum angle be-4

tween the viewing directions is at most 90°. The occlusion fac-5

tor for the surface visible from both points of view is used as6

the independent variable. Where the two experiments differ is7

that Gaussian noise with a fixed standard deviation is applied in8

experiment 6.9

The results for experiment 5 are shown in Figure 14, and10

those for experiment 6 in Figure 15. In the case of the former,11

the conclusions are in line with those from experiment 1, al-12

though performance here is generally better. We conjecture that13

this is improvement caused by the filter generating occluded14

meshes from similar points of view, inadvertently making the15

model and scene objects more similar to one another than cor-16

responding objects would be in experiment 1. When noise is17

added in experiment 6, the methods which were found to suf-18

fer most from its effects in experiment 3 are also those most19

affected by it here.20
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Fig. 18: Results for Experiment 8 (occlusion and Gaussian noise on both ob-
jects, clutter in scene).

The filters applied in experiments 7 and 8 are similar to those21

of 5 and 6, except for the addition of a clutter filter being to22

the scene object. The results for experiment 7 are shown in23

Figures 16 and 17, and those for experiment 8 in Figures 1824

and 19.25

As was shown in experiment 2, the COPS, SHOT, GeDI,26

MICI PointCloud, and to a lesser extent the Spin Image, are27

all affected by clutter. The methods that are the least robust to28

it are also those which suffer the most in both of these exper-29

iments. After adding noise in experiment 8, a similar drop is30

observed as to the one from experiment 5 to 6. Out of all tested31
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Fig. 19: Results for Experiment 8 (occlusion and Gaussian noise on both ob-
jects, clutter in scene).

methods, MICI Triangle and RICI are the only methods that can 32

handle all applied filters. 33

4.3. Level 3 experiment 34

The third level aims to simulate a combination of artefacts 35

commonly found in real-world 3D captures. Tested methods 36

are subjected to a combination of occlusion, a fixed amount 37

of Gaussian noise, vertex perturbations, and a small amount of 38

clutter. The observed values for these results have been clas- 39

sified into a ‘high‘ and ‘low‘ category for easier interpretation. 40

The results are shown in Figure 20. 41

No single 3D local descriptor could effectively handle high 42

levels of all filters combined. MICI-Triangle and the Spin Im- 43

age perform best with high levels of clutter, although the overall 44

effectiveness remains low. GeDI performs well when not much 45

clutter is present. 46

4.4. Execution Times 47

The results for the measured execution times are shown in 48

Figures 21 and 22. It should be noted that these charts show 49

results for triangle, point cloud, and learning based methods. 50

Learning based methods utilise the GPU, while the remain- 51

der were run exclusively single-threaded on the CPU. Results 52

for descriptor generation throughput for CPU and GPU-based 53

methods can therefore not be compared directly. 54

All execution time results were measured on a system with 55

an AMD Ryzen 9 3900X CPU and an Nvidia Quadro P5000 56

GPU. CPU frequency boosting was disabled to ensure the pro- 57

cessor maintained a constant execution speed (3.8GHz). Exe- 58

cution was further limited to a single core through the operating 59

system to avoid slowdowns from core switching. 60
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Fig. 21: Throughput of descriptor generation for different synthetic scenes. In Fig. 21a uniform density geometry within the support volume; In
Fig. 21b high density geometry within the support volume; In Fig. 21c geometry outside the support volume.

Fig. 22: Number of descriptors compared per second for each tested
method.

In terms of the observed generation speed, GEDI is clearly 1

the fastest of the learning-based methods. The Spin Image is 2

the fastest of the CPU-based implementations. The only excep- 3

tion can be seen in Figure 21c, where the SHOT descriptor ap- 4

pears to be much faster at discarding points outside its support 5

volume. Cylindrical support volume methods such as the Spin 6

Image and MICI must perform more calculations to determine 7

whether a point or triangle intersects their support region, and 8

receive a comparatively small uplift. Only the synthetic meshes 9

were used for measuring execution time. 10

In terms of comparison speed as shown in Figure 22, GEDI is 11

again the fastest method. However, here QUICCI takes a com- 12

paratively close second place. These results have all used CPU 13

implementations, and are thus comparable. The wide margin 14

between GEDI, QUICCI, and the others can be explained by 15
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their comparatively small size. The gap between them may be1

due to GEDI requiring fewer instructions to be compared, and2

its ability to better utilise vector instructions.3

The estimated overhead was effectively zero for all methods.4

We have therefore not included these results in a separate chart.5

4.5. Discussion6

From the obtained results it is clear that clutter is particu-7

larly challenging for deep learning because there is a change of8

paradigm from a single object to a scene. Figures 13c and 15c9

highlight that SHOT is also not clutter resistant. As soon as the10

clutter filter is added, its performance decreases immediately.11

The same effect is observed in the clutter vs occlusion and clut-12

ter vs Gaussian noise heatmaps of the original paper.13

The MICI methodology also displays exceptionally poor14

matching performance in cluttered scenes, while its correspond-15

ing triangle input version performs well. This can be attributed16

to the benchmark enforcing a maximum number of vertices per17

sampled point cloud, which results in a much lower point den-18

sity per pixel when a number of clutter objects are added into19

the scene. Had this limit not been in place, we conjecture that20

performance penalty relative to the triangle input would have21

been similar to the one observed in the occlusion experiment.22

Overall, it looks like methods tailored for local description,23

such as QUICCI, are less sensitive to dramatic perturbation.24

However, QUICCI and RICI “focus” on specific places where25

they expect to see changes in the intersection count. Adding26

noise causes those locations to become misaligned, and thus no27

longer match. This also explains their somewhat poor resistance28

to Gaussian noise, but it is these characteristics that also al-29

low them to ignore any clutter. Interestingly, the higher support30

radius MICI Triangle variant performed better than RICI, de-31

spite only using a different support radius. This implies that the32

methodology for determining this radius used by ShapeBench33

may not be optimal, and that a higher radius means that the34

same vertex shifts caused by Gaussian noise are not as impact-35

ful compared to methods using a smaller radius instead.36

Note that the current benchmark is evaluated independently37

of the grouping of the models into classes. Our approach to38

the analysis based on the DDI measure makes this benchmark39

considerably different from the SHREC 2013 one [1].40

Another interesting observation is that our results were gen-41

erated using a different root random seed from the original42

ShapeBench paper, but the resulting charts were highly simi-43

lar (with some amount of noise depending on the filter used).44

This is evidence that the results are sufficiently quantitative.45

5. Conclusions46

This SHREC 2025 track on partial retrieval evaluated seven47

methods, including two methods rooted in deep learning. Gen-48

erally, QUICCI, Spin Images and GeDI are robust to noise and49

occlusions. The benchmark is fully open and self-contained,50

permitting the modularity of testing other descriptors/methods.51

However, the size of the dataset (approximately 8.9 TB) re-52

quires adequate storage space and for some methods was nec-53

essary to decimate the data.54

As a future development, we would consider reducing the 55

dataset to 200-300 GB and analysing how well results are main- 56

tained when scaling down the number of objects used in the 57

evaluation. In addition, from the experiments, it appears that a 58

challenge for deep learning methods is the creation of ad hoc 59

datasets that enable training a model over complex scenes. This 60

suggests that, being completely deterministic, this benchmark 61

could be adapted to generate the training scenes. 62
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