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ARTICLE INFO ABSTRACT

Partial retrieval is a long-standing problem in the 3D Object Retrieval community. Its
main difficulties arise from how to define 3D local descriptors in a way that makes
them effective for partial retrieval and robust to common real-world issues, such as
occlusion, noise, or clutter, when dealing with 3D data. This SHREC track is based
on the newly proposed ShapeBench benchmark to evaluate the matching performance
of local descriptors. We propose an experiment consisting of three increasing levels of
difficulty, where we combine different filters to simulate real-world issues related to the
partial retrieval task. Our main findings show that classic 3D local descriptors like Spin
Image are robust to several of the tested filters (and their combinations), but more recent
learned local descriptors like GeDI can be competitive for some specific filters. Finally,
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no 3D local descriptor was able to successfully handle the hardest level of difficulty.

© 2025 Elsevier B.V. All rights reserved.

1. Introduction

Finding similar or relevant objects to a given query input is a
fundamental task in multimedia databases. An exact search in
this context is, in general, meaningless because two objects in
the dataset are identical only in the case where they are digital
copies. Two models obtained from the same source (e.g., by 3D
scanning the same object twice) will result in different but simi-
lar models. In addition to retrieval, similarity search algorithms
can be used to implement multimedia mining tasks such as clus-
tering and classification. Thus, it is relevant to study effective
methods for representing and searching multimedia objects.

*Corresponding author: bart.van.blokland @ntnu.no
e-mail: bart.van.blokland@ntnu.no (Bart Iver van Blokland),
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bart.van.blokland@ntnu.no (Bart Iver van Blokland)

Fig. 1: An example of a partial view from a scene. Note the missing
parts on the models.

Among similarity search problems, one of particular interest
is the partial retrieval on 3D models. In this task, usually the
query input is a partial 3D view, and the problem is to find the
corresponding part in a complete or partial 3D model or 3D
scene. Figure[T]shows an example of a partial scene. The partial
retrieval task is known to be difficult and complex, as previous
SHREC tracks on this problem have shown [11 2].

Practically all real-world 3D captures contain some degree
of occlusion, and it is as such one of the most common chal-
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lenges encountered by 3D shape retrieval and recognition meth-
ods. The advent of learning-based methods for this task has the
opportunity to improve upon the state of the art, and has as of
yet not received much attention from the machine learning com-
munity. Thus, a systematic benchmarking methodology on this
topic is both relevant and timely. Unfortunately, testing the ro-
bustness of a given 3D shape retrieval method to various scenar-
ios under which varying degrees of partiality occur is difficult
to accomplish using real-world 3D captures. These captures in-
herently contain various types of noise and capturing artefacts.
It is furthermore difficult to achieve quantitative results due to
the time and storage requirements for such individual captures.

This SHREC track builds upon the ShapeBench benchmark
introduced in previous work [3]], which proposed a replicable
and scalable methodology for evaluating local 3D shape de-
scriptors. While the original work focused on controlled com-
parisons of descriptor robustness using synthetic variations ap-
plied exclusively to the scene object, our SHREC track signifi-
cantly extends this evaluation. First, we simulate more realistic
and challenging retrieval scenarios by introducing multi-filter
pipelines and by applying distortions to both the model and the
scene. Second, we introduce a structured notion of difficulty
levels, enabling a progressive assessment of descriptor robust-
ness. Third, we include and evaluate several new descriptors,
including recent learning-based methods, and analyze their ex-
ecution times under controlled geometric conditions. Finally,
we adapt and optimize the benchmark infrastructure for test-
ing Python-based methods, thus broadening accessibility and
enabling the inclusion of deep learning descriptors. Together,
these extensions make our benchmark a more comprehensive
and realistic testbed for the partial 3D retrieval task.

Seven teams registered for this SHREC track, but only three
teams submitted results for evaluation: Ivan Sipiran from U. of
Chile [Team 1], Isaac Aguirre from U. of Chile [Team 2], and
Bart Iver van Blokland from NTNU [Team 3].

2. The ShapeBench benchmark

This section introduces the ShapeBench benchmark, the
dataset used for the benchmark, the evaluation metric, and the
combinations of filters selected for this SHREC track.

2.1. The benchmark

ShapeBench [3] is a recent methodology for evaluating local
3D shape descriptors. It evaluates the ability of a descriptor to
determine that two surface points are similar under various real-
world conditions. These include clutter, occlusion, and noise.

The benchmark measures this by matching corresponding
points on two copies of the same object (for historical reasons
referred to as the “model” and “scene” object), where the afore-
mentioned adverse conditions are simulated by modifying the
scene object using a sequence of filters. Each filter applies a
procedural modification to the object. A tested method must
subsequently correctly identify matching pairs of correspond-
ing model and scene points, where model points are hidden
among a large set of random points on other objects. All ob-
jects are taken from a set of 790,635 triangle meshes from the
Objaverse dataset [4].

This track instead applies filters to both objects, creating
a more realistic testing environment. We further extend the
benchmark by integrating support for methods implemented in
the Python language, which simplifies testing methods utilizing
machine learning. The estimation of occlusion and clutter has
also been reworked to be faster, in some cases reducing the total
execution time of a single benchmark run by several hours.

The Descriptor Distance Index (DDI) [3] is used as the pri-
mary metric to evaluate the efficacy of a given method in per-
forming these recognition tasks. Let ¢ be the dissimilarity func-
tion defined over a given 3D local descriptor. Let m be the
matching point in the model object, and let s be the match-
ing point in the scene object. Given a set of R random surface
points from the dataset, the DDI accumulates the number of
points r € R such that 6(m,r) < d(m, s), i.e., the DDI counts
how many random points were considered a better match, i.e.,
at a lower distance, for m than s, which is the known match.
The final DDI score for the 3D local descriptor is the sum of
all these values for all selected pairs of points (m, s). We also
measure the execution times of the evaluated methods.

2.2. Filters

A filter is a transformation applied on an object. As stated,
the purpose of filters is to simulate real-world issues while per-
forming retrieval tasks on digitized objects or scenes. First, we
define some terms that will be used for describing the filters:

e Support volume: The region (usually a cylinder or sphere)
that contains all the shape information used to compute a
local shape descriptor.

o Support radius: The size of the support volume of a local
shape descriptor.

e Independent variable: The variable being varied in each
filter, to test its effect on the DDI of a local descriptor.

For the evaluation of local 3D shape descriptors in this track,
we use ShapeBench with combinations of the following filters:

e Occlusion: This filter chooses a random viewing direction
from which the scene is viewed, and removes all geometry
that is not visible from that point of view. The independent
variable is the area of the remaining mesh that intersects
the support volume divided by the area of the unmodified
mesh intersecting the support volume. Figure 2h shows an
example of the application of this filter.

e Clutter: A physics simulator randomly places objects on
top of the input scene, simulating how they collide with
other objects and how gravity affects them. The indepen-
dent variable is the area of clutter objects that intersects the
support volume, divided by the area intersecting the sup-
port volume that belongs to the object being recognized.
Figure 2b shows an example of the result of this filter.

e Gaussian noise: Simulates various sources of noise intro-
duced in the capture process. This filter displaces the po-
sition of all vertices by a distance that follows a normal
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b)

c)

d)

Fig. 2: Illustration of the effects of individual filters. The model object is on
the left, and the scene is on the right. From top to bottom, the effects of the
occlusion, clutter, Gaussian noise, and vertex perturbation filters are shown.

distribution, using a fixed value for the standard deviation.
The independent variable is the standard deviation of the
noise function. Figure 2k shows an example of this filter.

e Vertex Perturbation: Simulates capturing the mesh mul-
tiple times by displacing triangle vertices, while keeping
the mesh’s overall shape intact. The independent variable
is the distance to the closest corresponding vertex in the
modified mesh. An example is shown in Figure [24.

2.2.1. Levels of difficulty

We define three different levels of increasing difficulty for the
partial retrieval task. Level 1 tests common sources of matching
inaccuracies in isolation. Level 2 tests combinations of these
that are often observed in practical applications. Level 3 aims to
present a combination of these that can be expected in captures
of real-world environments. Table[T]lists the filter configuration
on each experiment that is done at each difficulty level. Figure[3]
visualises Experiments 4 to 8, and Figure ] depicts the effects
of applying the filters as defined in Experiment 9.

The experiments use variations of the aforementioned filters
in order to reduce the dimensionality and interpretability of the
results. Experiments 6, 8, and 9 apply Gaussian noise with a
fixed standard deviation instead of one chosen at random. Ex-
periment 9 also applies the clutter filter with only 2 clutter ob-
jects instead of the usual 10. Finally, when occlusion is applied

3

Level | #Ex. | Filters applied on | Filters applied on
model scene
Level1 | Ex. 1 Occlusion
Ex.2 Clutter
Ex.3 Gaussian noise
Level 2 | Ex. 4 Occlusion + Gaus-
sian noise
Ex.5 | Occlusion Occlusion
Ex. 6 | Occlusion + Fixed | Occlusion + Fixed
Gaussian noise Gaussian noise
Ex.7 | Occlusion Occlusion + Clutter
Ex. 8 | Occlusion + Fixed | Occlusion + Clut-
Gaussian noise ter + Fixed Gaus-
sian noise
Level 3 | Ex. 9 Occlusion + Two
clutter objects +
Fixed Gaussian
noise +  Vertex
perturbation

Table 1: Levels of filtering, and their tested filter configurations

to both the model and the scene, the occlusion fraction of the
overlapping area is used as the independent variable.

The Descriptor Distance Index (DDI) metric is used by
Shapebench [3] to measure the effect of each filter configuration
on the matching performance of a local 3D shape descriptor.

2.3. Execution Time

We have also extended the benchmark with a new process
for measuring the execution time of a tested method. Deciding
the optimal method to use for 3D shape recognition is often
a balance between its matching capabilities, and its execution
time. In cases where latency is essential, or processing power is
limited, a faster method that is less capable may be desirable.

Recent work has predominantly measured the time to gen-
erate a single descriptor for a given surface as a function of
the support radius [3] 6, [7, [8 O], though the vertex or triangle
count [T0L[T11[12]], or case studies [[13}[14] have also been used.

Figure[5]shows observed execution times as a function of the
support radius. Figure [5b]demonstrates that the execution time
can vary by roughly a factor of two for the same radius. This
variation is caused by that the time cost for processing a point or
triangle that lies within the support volume can be different to
that of one which lies outside of it. The location of the support
volume varies the proportion of in- and excluded geometry for
a given surface, and thus the execution time. Figure [5a] shows
that this variation disappears when this proportion is constant,
as is the case with surface points on a sphere.

Understanding the performance characteristics of a method
therefore requires measuring the execution time cost of geom-
etry inside and outside the support volume separately. This ap-
proach deviates from previous work, which has generally dis-
regarded the cost of excluding geometry as being something all
methods need to do, with the implicit assumption that this cost
is approximately the same for all methods. We use synthetic
meshes, which allow this proportion to be controlled.
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b)

c)

d)

e)

Fig. 3: Illustration of the experiments at Level 2. The model is on the left, and
the scene is on the right. Refer to Table[T]for the filter configurations used. Here
Figures a) to e) correspond to experiments 4 to 8, respectively.

Fig. 4: Illustration of Experiment 9, at Level 3 Occlusion + Two clutter objects
+ Fixed Gaussian noise + Vertex perturbation). The model is on the left, and
the scene is on the right.

The first two of these (type a and b, as shown in Figure
place meshes at randomly chosen locations inside the support
volume. What is being varied between these is the distribution
of the geometry. Type a spreads it out uniformly, while type
b concentrates it. Type c exclusively places geometry outside
the support region, with a uniform distribution. Finally, type d
(not pictured directly) uses a mesh similar to that of type a, but

6 6
Lg Ly 40
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o3 c3
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o2 O 2
% % 10
i w

N
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0.5 1 1.5
Support radius

0.5 1 1.5
Support radius

(2) Sphere (b) Mesh (statue)

Fig. 5: Scatterplots showing the variation of execution times when com-
puting the SHOT descriptor 25 times for a randomly selected vertex
and support radius. Each input point cloud has 5M points. A heatmap
visualisation is used to highlight clusters of in total 10k sample points.

¢) All outside
hollow

Fig. 6: Types of synthetic meshes generated by the benchmark.

does not request the method to generate any descriptors. This
allows the estimation of the method’s overhead, assuming its
implementation does not have an explicit check for this.

For measuring the execution time itself, we limit the run-
ning of the descriptor method to a single thread. While de-
scriptors would in a practical setting primarily be computed in
parallel, we also wish to be able to compare against methods
implemented in Python. These are inherently single-threaded.
Boosting of the CPU was disabled, and the benchmark thread
was locked to a single core through the operating system. The
number of descriptors being generated at a time is fixed, and are
computed in a single batch. This ensures acceleration structures
(if the method uses them) are only computed once per scene.

One noteworthy consideration is the observation that triangle
and point cloud resolution are somewhat independent of one
another. Assuming that uniform surface sampling is used, only
the area of a mesh determines the point cloud resolution, not
the number of triangles that are used to describe it. The density
of triangles can vary greatly across a given mesh, which makes
it difficult to compare the execution times of point cloud and
triangle based methods directly.
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3. Methods

Among the 3D local descriptors considered in track, the
GeDI (Section 3.1) and COPS (Section [3.2) methods are
learning-based methods, while MICI (Section is a more tra-
ditional histogram-based method. In the evaluation we include
four descriptors used in the original ShapeBench [3]]: Spin Im-
age [15], Radial Intersection Count Image (RICI) [11], Quick
Intersection Count Change Image (QUICCI) [12]], and Signa-
ture of Histograms of OrienTations (SHOT) descriptor [9].

3.1. General and Distinctive Learned Descriptors (GeDI)
(Ivan Sipiran)

GeDi [16] introduces a learned descriptor for local 3D point
cloud patches that is compact and distinctive. A patch X c R®
is defined as a set of 3D points within a fixed radius r from
a central point X in the original point cloud P. To accommo-
date varying point densities and ensure uniform input size for
learning, the method performs a random sampling of m points
per patch, with resampling if fewer points are present. This
process yields a consistent structure for batch processing and
model training. To achieve invariance to transformations and
improve the robustness of the descriptor, the method estimates
a local reference frame (LRF) using the TOLDI algorithm [17].
Finally, the method downsamples the path to n < m points for
computational efficiency.

The canonicalisation step transforms these sampled points
to a normalized coordinate frame relative to the patch centre
and radius. Specifically, points are first rotated into the LRF
and then normalized for translation and scale invariance. The
canonicalised point set serves as input to a deep network ®g,
which learns to produce a descriptor f € R¢ with unit norm.
The network design is based on PointNet++ [[18]], which uses
hierarchical receptive fields to capture geometric patterns at
multiple spatial scales.

To keep geometric consistency and solve possible inaccura-
cies in LRF estimation, the method introduces QNet, a spatial
transformer network that outputs a unit quaternion represent-
ing a rotation in S O(3). Unlike matrix-based transformation
networks, QNet inherently produces valid rotations without re-
quiring additional regularization terms or computationally ex-
pensive orthogonalization steps. QNet is trained jointly with
the main descriptor network, providing an efficient and inte-
grated solution to compensate for canonicalization noise while
preserving the spatial properties critical for geometric learning.

The training procedure uses a siamese network architecture
with shared weights accross branches, processing pairs of corre-
sponding patches sampled from overlapping regions of different
point clouds. Descriptors are learned using a hard contrastive
loss that emphasizes discrimination between matching and non-
matching patches. Negative sampling is conducted by exclud-
ing samples within a predefined radius around anchor points,
ensuring spatial distinctiveness. This training strategy, com-
bined with randomized patch sampling, promotes robustness,
supports large minibatch training, and leads to improved gener-
alization across varying point cloud configurations.

(a) (b)

Fig. 7: In (a): visualization of the point projection and weighting pro-
cedure, and in (b) approximate visualisation of the weighting of point
samples to the sum being accumulated in each pixel bin of the MICI
descriptor.

(a) Triangle input (RICI) (b) Point cloud input (MICI)

Fig. 8: Descriptors generated using the RICI and MICI methodologies: despite
differing input modalities, approximately equivalent descriptors are produced.

3.2. Comprehensive model for Parts Segmentation
(Isaac Aguirre)

COPS [19] integrates semantics extracted from visual con-
cepts and 3D geometry to effectively identify object parts. It
renders a 3D point cloud from multiple viewpoints, deliver-
ing the resulting image outputs into DINOv2 [20] to extract
high-level features. These features are then backprojected onto
the corresponding points in the original point cloud. Finally, a
geometry-aware feature aggregation process clusters points into
parts and assigns them labels.

This procedure can also be used to compute fea-
tures/descriptors for each point, and it is expected that geo-
metrically similar parts will produce similar outputs. For the
experiments, DINOv2 with registers [21] is used, which is an
improved version of DINOvV2, specifically in its small variant.

3.3. Multimodal Intersection Count Image (MICI)
(Bart Iver van Blokland)

The Multimodal Intersection Count Image (MICI) is an ap-
proximation of the previously proposed RICI [11]] descriptor.
The RICI and MICI methods both aim to compute the number
of intersections between a circle described by each pixel in the
image, and the surface of an object. Where they differ is that
while RICI requires a triangle mesh as input, MICI uses a point
cloud (this is the “MICI PointCloud” variant). The combination
of the RICI and MICI methods allows triangle meshes and point
clouds to be compared across both modalities interchangeably
(this is the “MICI Triangle” variant).

This can be advantageous in application domains such as bin
picking, where it may be necessary to locate a known CAD ob-
ject in a 3D scan. Because descriptors can be extracted from
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the triangle mesh directly, the lossy step of uniformly sampling
the mesh into a point cloud can be avoided. The extracted
descriptors can subsequently be compared to those computed
from points in a point cloud captured by a 3D scanner.

To estimate the intersection count per bin, MICI accumulates
points from the input point cloud onto a plane subdivided into
a grid of pixels. A visual representation of this procedure is
shown in Figure [/(a). A descriptor is computed for the point
S and surface normal §,. A point P with surface normal P,
is projected in cylindrical coordinate space onto the descriptor,
yielding point / that determines which pixel P contributes to.

Two factors weigh the contribution. The first of which is
a 2D Gaussian function whose mean is centered in the corre-
sponding pixel and has a standard deviation of 0.1. This aims
to focus the contributions close to where the circles used by the
original RICI descriptors would be. These Gaussian weights
are visualised in Figure [7(b). The second weighting factor is
the cosine of the angle 6 between the circle tangent 7' and in-
put point cloud normal vector P,. For a given surface, as the
angle between these vectors decreases, more points will be en-
countered in the proximity of the circle. Reducing the weight of
these by the cosine accounts for this. The combination of these
factors results, under ideal conditions, in a descriptor that is vi-
sually nearly indistinguishable from a similar one computed for
a triangle mesh, as is shown in Figure[§]

All point contributions are accumulated in a 2D histogram.
The final step in the feature extraction process is to convert the
accumulated floating point values into a discrete number of in-
tersections. This is done by dividing the contents of each bin
by a constant factor ¢ that depends on the density of the input
point cloud, and thus the method and settings by which the point
cloud is acquired. For this benchmark, we determined ¢ experi-
mentally as the factor that minimises the difference between all
nonzero bins for the same descriptor computed using the MICI
and RICI method for a large set of sample descriptors.

4. Results and discussions

The results of the experiments defined in Table [T] are now
presented for all participating methods. For these results, the
following parameters have been used:

e Parameters for filters:

Fixed Gaussian noise: standard deviation of 0.001.

Vertex perturbation (alternate triangulation in the
original): same as original ShapeBench [3].

Multi-view occlusion: angle between viewpoints
varies between 0 and 90 degrees.

For Experiment 9, the number of clutter objects was
reduced to 2 instead of the usual 10 for a clutter filter.

e Parameters for methods:

— QUICCI: support radius 0.39.
— RICTI: support radius 0.255.
— SHOT: support radius 0.15.

COPS: support radius 0.5 (for training).

GeDI: support radius 0.5 (for training).

Spin image: support radius 0.81.

MICI: Level threshold set to 166.6, support radius
was 0.5 (MICI Triangle was also run at this support
radius to be able to compare maximum achievable
performance vs point cloud performance).

One other parameter of note is that vertex counts of point
clouds provided to GeDI and COPS by the benchmark were
scaled to 10% and 5%, respectively. Running both of these
methods at full resolution proved intractably slow. The refer-
ence descriptor set of COPS was also limited to 250,000 de-
scriptors for a similar reason. The latter does cause some prob-
lems with comparing its performance to other methods. How-
ever, based on experience the DDI=0 line should approximately
be correct, but other subdivisions may shift had the full reso-
Iution been used instead. While this measure provides these
methods with less information, we believe any practical appli-
cation of them would require similar measures. Comparisons to
other methods should therefore be possible.

4.1. Level 1 experiments

The first level investigates the effect of specific adverse con-
ditions in isolation of others, where each experiment applies
a single filter. For each experiment, the observed effect on
the DDI metric is shown for each tested method. The colours
show the distribution of DDI values, with green representing
DDI = 0. A higher proportion of low DDI values corresponds
to a more effective local descriptor. Therefore, the greener the
chart, the more effective the local descriptor is. Each chart
also contains the commonly used Area under Precision-Recall
curves (AUC) metric.
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Fig. 9: Results for Experiment 1 (Occlusion). Figure |9i|shows the number of

sample points per histogram bin.
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Fig. 10: Results for Experiment 2 (Clutter). Figure shows the number of
sample points per histogram bin.
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Fig. 11: Results for Experiment 3 (Gaussian Noise). Figure shows the
number of sample points per histogram bin.

The effects of occlusion are shown in Figure [9] The Spin Im-
age, RICI, and QUICCI outperformed the other methods. GeDI
and SHOT rely on point cloud neighbourhoods for their shape
representation, which are degraded by the filter. Visual descrip-
tors like COPS are also not robust to geometrical occlusion.

The results for clutter can be seen in Figure Here MICI
Triangle and RICI outperform the other methods, followed by
QUICCI. These descriptors were specifically designed to be ro-
bust to clutter, which is evident here. The other methods show
little to no ability to resist clutter.

When subjected to normally distributed vertex perturbations,

0.01,

on

Standard Deviati
Standard Deviation
Standard Deviation

02 04 06 08 1
Occlusion

0.2 04 06 08
Occlusion

0.2 04 06 08
Occlusion

(c) SHOT

(a) QUICCI (b) RICI

c = i c
8 .S o 8
g - 8 g
> > >
O @ 0. | O
) ) C
k) B i T
[ @ Y . [
° i T o
c c A c
8 S o, 8
7] 7] S

-

-
02 04 06 08 1 02 04 06 08 1 0.2 04 06 08
Occlusion Occlusion Occlusion
(d) COPS (e) GeDI (f) MICI PointCloud
0.01 1 1
5 5 ]
So. .S 0.008f .
g 2 0.8
> >
@ 0. @ 0.006
g & 0.6
° °
= o & 0.004 0.4
E E
S o 8 0.002] 0.2
7] 7]
[l

02 04 06 08 1
Occlusion

(g) MICI Triangle

0 02 04 06 08
Occlusion

(h) Spin Image

Fig. 12: Heatmaps of results for experiment 4 (Occlusion + Gaussian noise).
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Fig. 13: Line curves of results for experiment 4 (Occlusion + Gaussian noise).

Figure [T1] shows that the Spin Image is the most robust in this
test. This can be explained by its subdivision of contributions
of incoming vertices having a smoothing effect, and large sup-
port radius. In contrast, SHOT has impressive performance de-
spite its small support radius. Learned neural networks work
as smoothed regression functions, which could explain their ro-
bustness to noise. COPS may also benefit here from that visual
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Fig. 15: Results for Experiment 6 (occlusion and Gaussian noise on both
meshes). Figure@ shows the number of sample points per histogram bin.

features are independent to geometrical noise. Finally, QUICCI
and RICI are more susceptible to changes in the geometry, and
thus they obtain worse results compared to the other methods.

4.2. Level 2 experiments

The second level experiments investigate the effect of combi-
nations of filters. Two sets of plots (heatmaps and line curves)
are computed for each experiment, showing the same results
from different perspectives. To simplify visualisation, these
charts focus on the fraction of cases where the DDI = 0. In the
heatmaps, this proportion is represented by a colour map, where

green indicates a proportion equal to 1 (the optimal result). The
line charts group results by their values on the vertical axis.
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Fig. 16: Results for Experiment 7 (occlusion on both objects, clutter in scene).
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When Occlusion is combined with Gaussian noise, Fig-
ures[I2]and[I3]show that the Spin Image obtains the best results,
followed by MICI (both versions). As Spin Image behaves well
in both filters separately, one would expect it to have good ro-
bustness to both filters. GeDI also shows some robustness for
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low levels of noise and occlusion, which is also inherited from
its robustness to Gaussian noise.

Experiments 5 and 6 both apply an occlusion filter on the
model and scene objects, but ensure the maximum angle be-
tween the viewing directions is at most 90°. The occlusion fac-
tor for the surface visible from both points of view is used as
the independent variable. Where the two experiments differ is
that Gaussian noise with a fixed standard deviation is applied in
experiment 6.

The results for experiment 5 are shown in Figure [I4} and
those for experiment 6 in Figure [I3] In the case of the former,
the conclusions are in line with those from experiment 1, al-
though performance here is generally better. We conjecture that
this is improvement caused by the filter generating occluded
meshes from similar points of view, inadvertently making the
model and scene objects more similar to one another than cor-
responding objects would be in experiment 1. When noise is
added in experiment 6, the methods which were found to suf-
fer most from its effects in experiment 3 are also those most
affected by it here.
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Fig. 18: Results for Experiment 8 (occlusion and Gaussian noise on both ob-
jects, clutter in scene).

The filters applied in experiments 7 and 8 are similar to those
of 5 and 6, except for the addition of a clutter filter being to
the scene object. The results for experiment 7 are shown in
Figures [T6] and [T7] and those for experiment 8 in Figures [T§]
and[T9

As was shown in experiment 2, the COPS, SHOT, GeDI,
MICI PointCloud, and to a lesser extent the Spin Image, are
all affected by clutter. The methods that are the least robust to
it are also those which suffer the most in both of these exper-
iments. After adding noise in experiment 8, a similar drop is
observed as to the one from experiment 5 to 6. Out of all tested
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Fig. 19: Results for Experiment 8 (occlusion and Gaussian noise on both ob-
jects, clutter in scene).

methods, MICI Triangle and RICI are the only methods that can
handle all applied filters.

4.3. Level 3 experiment

The third level aims to simulate a combination of artefacts
commonly found in real-world 3D captures. Tested methods
are subjected to a combination of occlusion, a fixed amount
of Gaussian noise, vertex perturbations, and a small amount of
clutter. The observed values for these results have been clas-
sified into a ‘high‘ and ‘low* category for easier interpretation.
The results are shown in Figure 20]

No single 3D local descriptor could effectively handle high
levels of all filters combined. MICI-Triangle and the Spin Im-
age perform best with high levels of clutter, although the overall
effectiveness remains low. GeDI performs well when not much
clutter is present.

4.4. Execution Times

The results for the measured execution times are shown in
Figures 2T] and 22] It should be noted that these charts show
results for triangle, point cloud, and learning based methods.
Learning based methods utilise the GPU, while the remain-
der were run exclusively single-threaded on the CPU. Results
for descriptor generation throughput for CPU and GPU-based
methods can therefore not be compared directly.

All execution time results were measured on a system with
an AMD Ryzen 9 3900X CPU and an Nvidia Quadro P5000
GPU. CPU frequency boosting was disabled to ensure the pro-
cessor maintained a constant execution speed (3.8GHz). Exe-
cution was further limited to a single core through the operating
system to avoid slowdowns from core switching.
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In terms of the observed generation speed, GEDI is clearly
the fastest of the learning-based methods. The Spin Image is
the fastest of the CPU-based implementations. The only excep-
tion can be seen in Figure 21c| where the SHOT descriptor ap-
pears to be much faster at discarding points outside its support
volume. Cylindrical support volume methods such as the Spin
Image and MICI must perform more calculations to determine
whether a point or triangle intersects their support region, and
receive a comparatively small uplift. Only the synthetic meshes
were used for measuring execution time.

In terms of comparison speed as shown in Figure22] GEDI is
again the fastest method. However, here QUICCI takes a com-
paratively close second place. These results have all used CPU
implementations, and are thus comparable. The wide margin
between GEDI, QUICCI, and the others can be explained by
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their comparatively small size. The gap between them may be
due to GEDI requiring fewer instructions to be compared, and
its ability to better utilise vector instructions.

The estimated overhead was effectively zero for all methods.
We have therefore not included these results in a separate chart.

4.5. Discussion

From the obtained results it is clear that clutter is particu-
larly challenging for deep learning because there is a change of
paradigm from a single object to a scene. Figures [I3¢]and [T5¢|
highlight that SHOT is also not clutter resistant. As soon as the
clutter filter is added, its performance decreases immediately.
The same effect is observed in the clutter vs occlusion and clut-
ter vs Gaussian noise heatmaps of the original paper.

The MICI methodology also displays exceptionally poor
matching performance in cluttered scenes, while its correspond-
ing triangle input version performs well. This can be attributed
to the benchmark enforcing a maximum number of vertices per
sampled point cloud, which results in a much lower point den-
sity per pixel when a number of clutter objects are added into
the scene. Had this limit not been in place, we conjecture that
performance penalty relative to the triangle input would have
been similar to the one observed in the occlusion experiment.

Overall, it looks like methods tailored for local description,
such as QUICCI, are less sensitive to dramatic perturbation.
However, QUICCI and RICI “focus” on specific places where
they expect to see changes in the intersection count. Adding
noise causes those locations to become misaligned, and thus no
longer match. This also explains their somewhat poor resistance
to Gaussian noise, but it is these characteristics that also al-
low them to ignore any clutter. Interestingly, the higher support
radius MICI Triangle variant performed better than RICI, de-
spite only using a different support radius. This implies that the
methodology for determining this radius used by ShapeBench
may not be optimal, and that a higher radius means that the
same vertex shifts caused by Gaussian noise are not as impact-
ful compared to methods using a smaller radius instead.

Note that the current benchmark is evaluated independently
of the grouping of the models into classes. Our approach to
the analysis based on the DDI measure makes this benchmark
considerably different from the SHREC 2013 one [1]].

Another interesting observation is that our results were gen-
erated using a different root random seed from the original
ShapeBench paper, but the resulting charts were highly simi-
lar (with some amount of noise depending on the filter used).
This is evidence that the results are sufficiently quantitative.

5. Conclusions

This SHREC 2025 track on partial retrieval evaluated seven
methods, including two methods rooted in deep learning. Gen-
erally, QUICCI, Spin Images and GeDI are robust to noise and
occlusions. The benchmark is fully open and self-contained,
permitting the modularity of testing other descriptors/methods.
However, the size of the dataset (approximately 8.9 TB) re-
quires adequate storage space and for some methods was nec-
essary to decimate the data.

As a future development, we would consider reducing the
dataset to 200-300 GB and analysing how well results are main-
tained when scaling down the number of objects used in the
evaluation. In addition, from the experiments, it appears that a
challenge for deep learning methods is the creation of ad hoc
datasets that enable training a model over complex scenes. This
suggests that, being completely deterministic, this benchmark
could be adapted to generate the training scenes.
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