

SHREC 2025: Partial Retrieval Benchmark

Bart Iver van Blokland^{a,*}, Isaac Aguirre^b, Ivan Sipiran^b, Benjamin Bustos^c, Silvia Biasotti^d, Giorgio Palmieri^d

^aNTNU, Department of Computer Science, Sem Sælands vei 9, Trondheim, 7034, Trøndelag, Norway

^bUniversity of Chile, Department of Computer Science, Av. Beauchef 851, Santiago, 8370456, Metropolitan Region, Chile

^cUniversity of Chile, Department of Computer Science & IMFD, Av. Beauchef 851, Santiago, 8370456, Metropolitan Region, Chile

^dIstituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes” IMATI - CNR, Via de Marini 16, Genova, 16149, Italy

ARTICLE INFO

Article history:

Received May 12, 2025

ABSTRACT

Partial retrieval is a long-standing problem in the 3D Object Retrieval community. Its main difficulties arise from how to define 3D local descriptors in a way that makes them effective for partial retrieval and robust to common real-world issues, such as occlusion, noise, or clutter, when dealing with 3D data. This SHREC track is based on the newly proposed ShapeBench benchmark to evaluate the matching performance of local descriptors. We propose an experiment consisting of three increasing levels of difficulty, where we combine different filters to simulate real-world issues related to the partial retrieval task. Our main findings show that classic 3D local descriptors like Spin Image are robust to several of the tested filters (and their combinations), but more recent learned local descriptors like GeDI can be competitive for some specific filters. Finally, no 3D local descriptor was able to successfully handle the hardest level of difficulty.

© 2025 Elsevier B.V. All rights reserved.

1. Introduction

Finding similar or relevant objects to a given query input is a fundamental task in multimedia databases. An exact search in this context is, in general, meaningless because two objects in the dataset are identical only in the case where they are digital copies. Two models obtained from the same source (e.g., by 3D scanning the same object twice) will result in different but similar models. In addition to retrieval, similarity search algorithms can be used to implement multimedia mining tasks such as clustering and classification. Thus, it is relevant to study effective methods for representing and searching multimedia objects.

Fig. 1: An example of a partial view from a scene. Note the missing parts on the models.

Among similarity search problems, one of particular interest is the partial retrieval on 3D models. In this task, usually the query input is a partial 3D view, and the problem is to find the corresponding part in a complete or partial 3D model or 3D scene. Figure 1 shows an example of a partial scene. The partial retrieval task is known to be difficult and complex, as previous SHREC tracks on this problem have shown [1, 2].

Practically all real-world 3D captures contain some degree of occlusion, and it is as such one of the most common chal-

*Corresponding author: bart.van.blokland@ntnu.no

e-mail: bart.van.blokland@ntnu.no (Bart Iver van Blokland), example@email.com (Bart Iver van Blokland), isaac.aguirre@ing.uchile.cl (Isaac Aguirre), isipiran@cc.uchile.cl (Ivan Sipiran), bebustos@dcc.uchile.cl (Benjamin Bustos), silvia@ge.imati.cnr.it (Silvia Biasotti), giorgio.palmieri@ge.imati.cnr.it (Giorgio Palmieri), bart.van.blokland@ntnu.no (Bart Iver van Blokland)

lenges encountered by 3D shape retrieval and recognition methods. The advent of learning-based methods for this task has the opportunity to improve upon the state of the art, and has as of yet not received much attention from the machine learning community. Thus, a systematic benchmarking methodology on this topic is both relevant and timely. Unfortunately, testing the robustness of a given 3D shape retrieval method to various scenarios under which varying degrees of partiality occur is difficult to accomplish using real-world 3D captures. These captures inherently contain various types of noise and capturing artefacts. It is furthermore difficult to achieve quantitative results due to the time and storage requirements for such individual captures.

This SHREC track builds upon the ShapeBench benchmark introduced in previous work [3], which proposed a replicable and scalable methodology for evaluating local 3D shape descriptors. While the original work focused on controlled comparisons of descriptor robustness using synthetic variations applied exclusively to the scene object, our SHREC track significantly extends this evaluation. First, we simulate more realistic and challenging retrieval scenarios by introducing multi-filter pipelines and by applying distortions to both the model and the scene. Second, we introduce a structured notion of difficulty levels, enabling a progressive assessment of descriptor robustness. Third, we include and evaluate several new descriptors, including recent learning-based methods, and analyze their execution times under controlled geometric conditions. Finally, we adapt and optimize the benchmark infrastructure for testing Python-based methods, thus broadening accessibility and enabling the inclusion of deep learning descriptors. Together, these extensions make our benchmark a more comprehensive and realistic testbed for the partial 3D retrieval task.

Seven teams registered for this SHREC track, but only three teams submitted results for evaluation: Ivan Sipiran from U. of Chile [Team 1], Isaac Aguirre from U. of Chile [Team 2], and Bart Iver van Blokland from NTNU [Team 3].

2. The ShapeBench benchmark

This section introduces the ShapeBench benchmark, the dataset used for the benchmark, the evaluation metric, and the combinations of filters selected for this SHREC track.

2.1. The benchmark

ShapeBench [3] is a recent methodology for evaluating local 3D shape descriptors. It evaluates the ability of a descriptor to determine that two surface points are similar under various real-world conditions. These include clutter, occlusion, and noise.

The benchmark measures this by matching corresponding points on two copies of the same object (for historical reasons referred to as the “model” and “scene” object), where the aforementioned adverse conditions are simulated by modifying the scene object using a sequence of *filters*. Each filter applies a procedural modification to the object. A tested method must subsequently correctly identify matching pairs of corresponding model and scene points, where model points are hidden among a large set of random points on other objects. All objects are taken from a set of 790,635 triangle meshes from the Objaverse dataset [4].

This track instead applies filters to both objects, creating a more realistic testing environment. We further extend the benchmark by integrating support for methods implemented in the Python language, which simplifies testing methods utilizing machine learning. The estimation of occlusion and clutter has also been reworked to be faster, in some cases reducing the total execution time of a single benchmark run by several hours.

The Descriptor Distance Index (DDI) [3] is used as the primary metric to evaluate the efficacy of a given method in performing these recognition tasks. Let δ be the dissimilarity function defined over a given 3D local descriptor. Let m be the matching point in the model object, and let s be the matching point in the scene object. Given a set of R random surface points from the dataset, the DDI accumulates the number of points $r \in R$ such that $\delta(m, r) < \delta(m, s)$, i.e., the DDI counts how many random points were considered a better match, i.e., at a lower distance, for m than s , which is the known match. The final DDI score for the 3D local descriptor is the sum of all these values for all selected pairs of points (m, s) . We also measure the execution times of the evaluated methods.

2.2. Filters

A filter is a transformation applied on an object. As stated, the purpose of filters is to simulate real-world issues while performing retrieval tasks on digitized objects or scenes. First, we define some terms that will be used for describing the filters:

- Support volume: The region (usually a cylinder or sphere) that contains all the shape information used to compute a local shape descriptor.
- Support radius: The size of the support volume of a local shape descriptor.
- Independent variable: The variable being varied in each filter, to test its effect on the DDI of a local descriptor.

For the evaluation of local 3D shape descriptors in this track, we use ShapeBench with combinations of the following filters:

- Occlusion: This filter chooses a random viewing direction from which the scene is viewed, and removes all geometry that is not visible from that point of view. The independent variable is the area of the remaining mesh that intersects the support volume divided by the area of the unmodified mesh intersecting the support volume. Figure 2a shows an example of the application of this filter.
- Clutter: A physics simulator randomly places objects on top of the input scene, simulating how they collide with other objects and how gravity affects them. The independent variable is the area of clutter objects that intersects the support volume, divided by the area intersecting the support volume that belongs to the object being recognized. Figure 2b shows an example of the result of this filter.
- Gaussian noise: Simulates various sources of noise introduced in the capture process. This filter displaces the position of all vertices by a distance that follows a normal

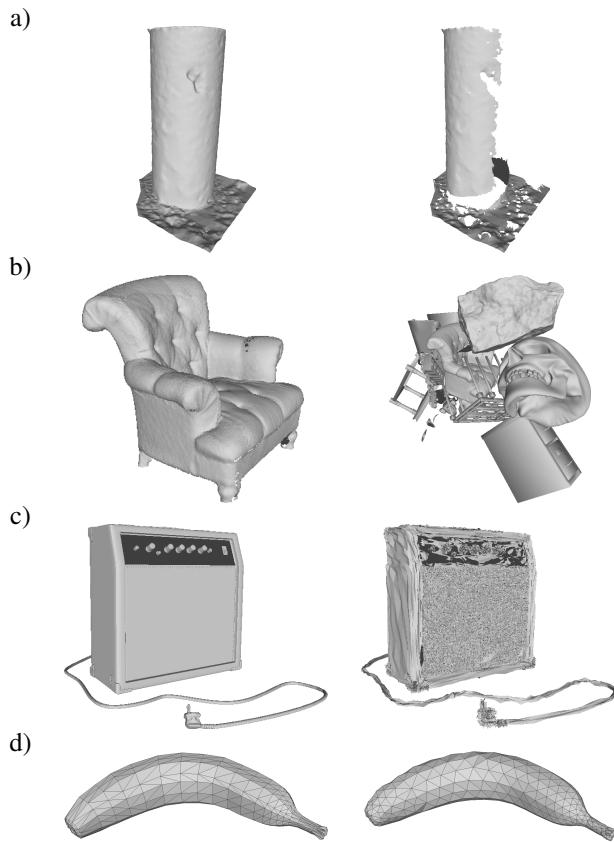


Fig. 2: Illustration of the effects of individual filters. The model object is on the left, and the scene is on the right. From top to bottom, the effects of the occlusion, clutter, Gaussian noise, and vertex perturbation filters are shown.

1 distribution, using a fixed value for the standard deviation.
 2 The independent variable is the standard deviation of the
 3 noise function. Figure 2c shows an example of this filter.

4

- 5 Vertex Perturbation: Simulates capturing the mesh multiple
 6 times by displacing triangle vertices, while keeping the
 7 mesh's overall shape intact. The independent variable
 8 is the distance to the closest corresponding vertex in the
 9 modified mesh. An example is shown in Figure 2d.

9 2.2.1. Levels of difficulty

10 We define three different levels of increasing difficulty for the
 11 partial retrieval task. Level 1 tests common sources of matching
 12 inaccuracies in isolation. Level 2 tests combinations of these
 13 that are often observed in practical applications. Level 3 aims to
 14 present a combination of these that can be expected in captures
 15 of real-world environments. Table 1 lists the filter configuration
 16 on each experiment that is done at each difficulty level. Figure 3
 17 visualises Experiments 4 to 8, and Figure 4 depicts the effects
 18 of applying the filters as defined in Experiment 9.

19 The experiments use variations of the aforementioned filters
 20 in order to reduce the dimensionality and interpretability of the
 21 results. Experiments 6, 8, and 9 apply Gaussian noise with a
 22 fixed standard deviation instead of one chosen at random. Ex-
 23 periment 9 also applies the clutter filter with only 2 clutter ob-
 24 jects instead of the usual 10. Finally, when occlusion is applied

Level	# Ex.	Filters applied on model	Filters applied on scene
Level 1	Ex. 1		Occlusion
	Ex. 2		Clutter
	Ex. 3		Gaussian noise
Level 2	Ex. 4		Occlusion + Gaussian noise
	Ex. 5	Occlusion	Occlusion
	Ex. 6	Occlusion + Fixed Gaussian noise	Occlusion + Fixed Gaussian noise
	Ex. 7	Occlusion	Occlusion + Clutter
Level 3	Ex. 8	Occlusion + Fixed Gaussian noise	Occlusion + Clutter + Fixed Gaussian noise
	Ex. 9		Occlusion + Two clutter objects + Fixed Gaussian noise + Vertex perturbation

Table 1: Levels of filtering, and their tested filter configurations

25 to both the model and the scene, the occlusion fraction of the
 26 overlapping area is used as the independent variable.

27 The Descriptor Distance Index (DDI) metric is used by
 28 Shapebench [3] to measure the effect of each filter configuration
 29 on the matching performance of a local 3D shape descriptor.

30 2.3. Execution Time

31 We have also extended the benchmark with a new process
 32 for measuring the execution time of a tested method. Deciding
 33 the optimal method to use for 3D shape recognition is often
 34 a balance between its matching capabilities, and its execution
 35 time. In cases where latency is essential, or processing power is
 36 limited, a faster method that is less capable may be desirable.

37 Recent work has predominantly measured the time to gen-
 38 erate a single descriptor for a given surface as a function of
 39 the support radius [5, 6, 7, 8, 9], though the vertex or triangle
 40 count [10, 11, 12], or case studies [13, 14] have also been used.

41 Figure 5 shows observed execution times as a function of the
 42 support radius. Figure 5b demonstrates that the execution time
 43 can vary by roughly a factor of two for the same radius. This
 44 variation is caused by that the time cost for processing a point or
 45 triangle that lies within the support volume can be different to
 46 that of one which lies outside of it. The location of the support
 47 volume varies the proportion of in- and excluded geometry for
 48 a given surface, and thus the execution time. Figure 5a shows
 49 that this variation disappears when this proportion is constant,
 50 as is the case with surface points on a sphere.

51 Understanding the performance characteristics of a method
 52 therefore requires measuring the execution time cost of geom-
 53 etry inside and outside the support volume separately. This ap-
 54 proach deviates from previous work, which has generally dis-
 55 regarded the cost of excluding geometry as being something all
 56 methods need to do, with the implicit assumption that this cost
 57 is approximately the same for all methods. We use synthetic
 58 meshes, which allow this proportion to be controlled.

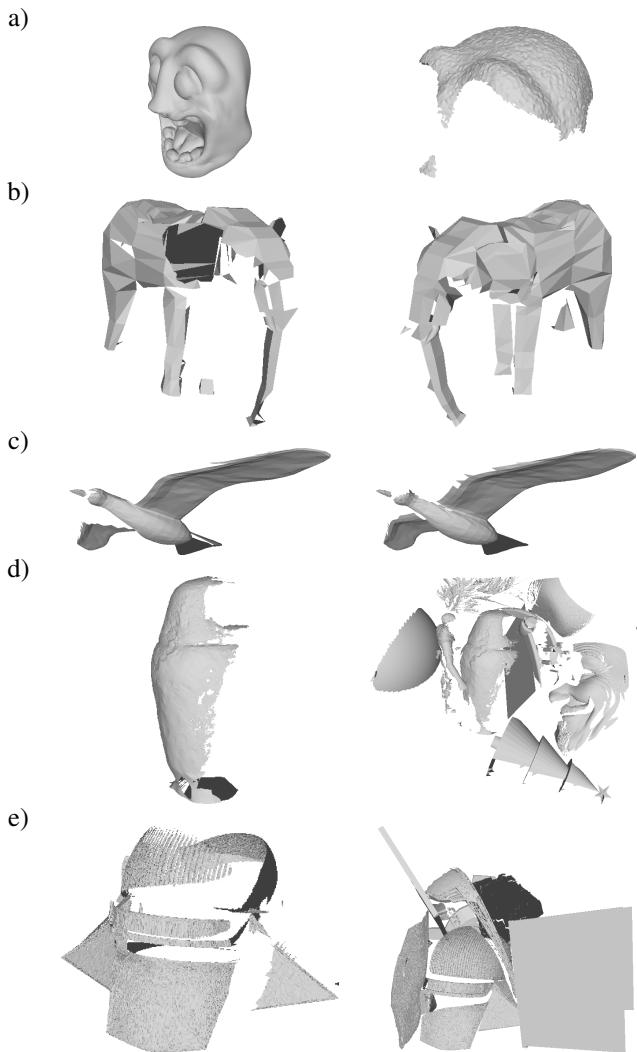


Fig. 3: Illustration of the experiments at Level 2. The model is on the left, and the scene is on the right. Refer to Table 1 for the filter configurations used. Here Figures a) to e) correspond to experiments 4 to 8, respectively.

Fig. 4: Illustration of Experiment 9, at Level 3 Occlusion + Two clutter objects + Fixed Gaussian noise + Vertex perturbation). The model is on the left, and the scene is on the right.

1 The first two of these (type a and b, as shown in Figure 6) place meshes at randomly chosen locations inside the support
 2 volume. What is being varied between these is the distribution
 3 of the geometry. Type a spreads it out uniformly, while type
 4 b concentrates it. Type c exclusively places geometry outside
 5 the support region, with a uniform distribution. Finally, type d
 6 (not pictured directly) uses a mesh similar to that of type a, but

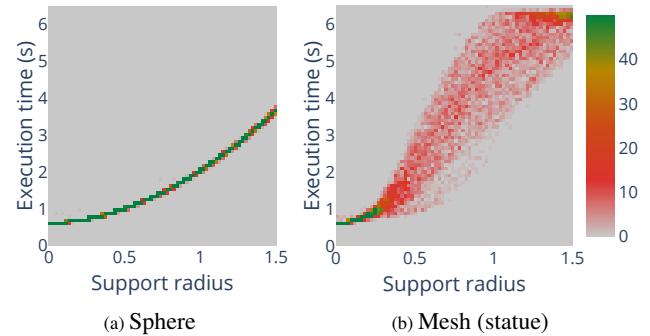


Fig. 5: Scatterplots showing the variation of execution times when computing the SHOT descriptor 25 times for a randomly selected vertex and support radius. Each input point cloud has 5M points. A heatmap visualisation is used to highlight clusters of in total 10k sample points.

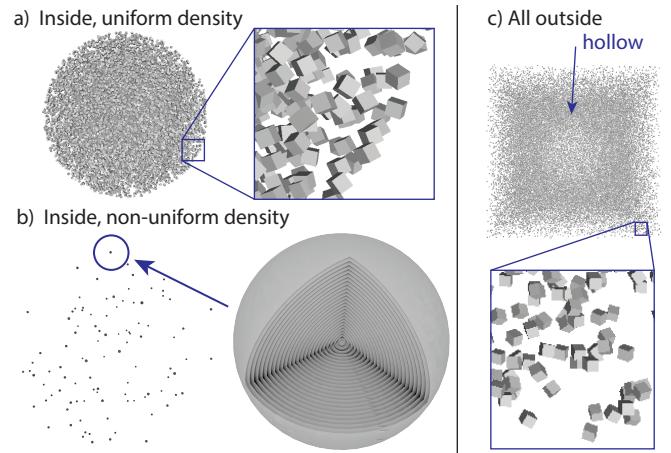


Fig. 6: Types of synthetic meshes generated by the benchmark.

does not request the method to generate any descriptors. This allows the estimation of the method's overhead, assuming its implementation does not have an explicit check for this.

For measuring the execution time itself, we limit the running of the descriptor method to a single thread. While descriptors would in a practical setting primarily be computed in parallel, we also wish to be able to compare against methods implemented in Python. These are inherently single-threaded. Boosting of the CPU was disabled, and the benchmark thread was locked to a single core through the operating system. The number of descriptors being generated at a time is fixed, and are computed in a single batch. This ensures acceleration structures (if the method uses them) are only computed once per scene.

One noteworthy consideration is the observation that triangle and point cloud resolution are somewhat independent of one another. Assuming that uniform surface sampling is used, only the area of a mesh determines the point cloud resolution, not the number of triangles that are used to describe it. The density of triangles can vary greatly across a given mesh, which makes it difficult to compare the execution times of point cloud and triangle based methods directly.

3. Methods

Among the 3D local descriptors considered in track, the GeDI (Section 3.1) and COPS (Section 3.2) methods are learning-based methods, while MICI (Section 3.3) is a more traditional histogram-based method. In the evaluation we include four descriptors used in the original ShapeBench [3]: Spin Image [15], Radial Intersection Count Image (RICI) [11], Quick Intersection Count Change Image (QUICCI) [12], and Signature of Histograms of Orientations (SHOT) descriptor [9].

3.1. General and Distinctive Learned Descriptors (GeDI) (Ivan Sipiran)

GeDI [16] introduces a learned descriptor for local 3D point cloud patches that is compact and distinctive. A patch $X \subset \mathcal{R}^3$ is defined as a set of 3D points within a fixed radius r from a central point \hat{x} in the original point cloud P . To accommodate varying point densities and ensure uniform input size for learning, the method performs a random sampling of m points per patch, with resampling if fewer points are present. This process yields a consistent structure for batch processing and model training. To achieve invariance to transformations and improve the robustness of the descriptor, the method estimates a local reference frame (LRF) using the TOLDI algorithm [17]. Finally, the method downsamples the path to $n < m$ points for computational efficiency.

The canonicalisation step transforms these sampled points to a normalized coordinate frame relative to the patch centre and radius. Specifically, points are first rotated into the LRF and then normalized for translation and scale invariance. The canonicalised point set serves as input to a deep network Φ_Θ , which learns to produce a descriptor $f \in \mathcal{R}^d$ with unit norm. The network design is based on PointNet++ [18], which uses hierarchical receptive fields to capture geometric patterns at multiple spatial scales.

To keep geometric consistency and solve possible inaccuracies in LRF estimation, the method introduces QNet, a spatial transformer network that outputs a unit quaternion representing a rotation in $SO(3)$. Unlike matrix-based transformation networks, QNet inherently produces valid rotations without requiring additional regularization terms or computationally expensive orthogonalization steps. QNet is trained jointly with the main descriptor network, providing an efficient and integrated solution to compensate for canonicalization noise while preserving the spatial properties critical for geometric learning.

The training procedure uses a siamese network architecture with shared weights across branches, processing pairs of corresponding patches sampled from overlapping regions of different point clouds. Descriptors are learned using a hard contrastive loss that emphasizes discrimination between matching and non-matching patches. Negative sampling is conducted by excluding samples within a predefined radius around anchor points, ensuring spatial distinctiveness. This training strategy, combined with randomized patch sampling, promotes robustness, supports large minibatch training, and leads to improved generalization across varying point cloud configurations.

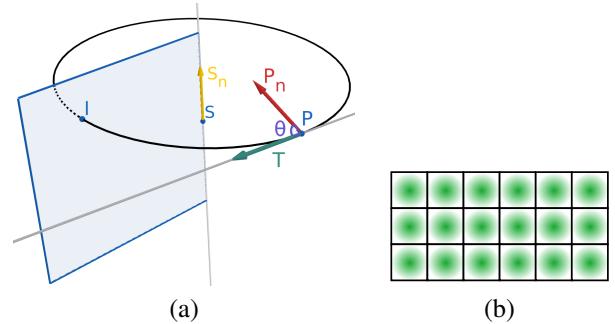


Fig. 7: In (a): visualization of the point projection and weighting procedure, and in (b) approximate visualisation of the weighting of point samples to the sum being accumulated in each pixel bin of the MICI descriptor.

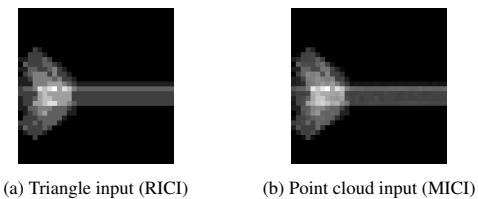


Fig. 8: Descriptors generated using the RICI and MICI methodologies: despite differing input modalities, approximately equivalent descriptors are produced.

3.2. Comprehensive model for Parts Segmentation (Isaac Aguirre)

COPS [19] integrates semantics extracted from visual concepts and 3D geometry to effectively identify object parts. It renders a 3D point cloud from multiple viewpoints, delivering the resulting image outputs into DINOv2 [20] to extract high-level features. These features are then backprojected onto the corresponding points in the original point cloud. Finally, a geometry-aware feature aggregation process clusters points into parts and assigns them labels.

This procedure can also be used to compute features/descriptors for each point, and it is expected that geometrically similar parts will produce similar outputs. For the experiments, DINOv2 with registers [21] is used, which is an improved version of DINOv2, specifically in its small variant.

3.3. Multimodal Intersection Count Image (MICI) (Bart Iver van Blokland)

The Multimodal Intersection Count Image (MICI) is an approximation of the previously proposed RICI [11] descriptor. The RICI and MICI methods both aim to compute the number of intersections between a circle described by each pixel in the image, and the surface of an object. Where they differ is that while RICI requires a triangle mesh as input, MICI uses a point cloud (this is the “MICI PointCloud” variant). The combination of the RICI and MICI methods allows triangle meshes and point clouds to be compared across both modalities interchangeably (this is the “MICI Triangle” variant).

This can be advantageous in application domains such as bin picking, where it may be necessary to locate a known CAD object in a 3D scan. Because descriptors can be extracted from

1 the triangle mesh directly, the lossy step of uniformly sampling
 2 the mesh into a point cloud can be avoided. The extracted
 3 descriptors can subsequently be compared to those computed
 4 from points in a point cloud captured by a 3D scanner.

5 To estimate the intersection count per bin, MICI accumulates
 6 points from the input point cloud onto a plane subdivided into
 7 a grid of pixels. A visual representation of this procedure is
 8 shown in Figure 7(a). A descriptor is computed for the point
 9 S and surface normal S_n . A point P with surface normal P_n
 10 is projected in cylindrical coordinate space onto the descriptor,
 11 yielding point I that determines which pixel P contributes to.

12 Two factors weigh the contribution. The first of which is
 13 a 2D Gaussian function whose mean is centered in the corre-
 14 sponding pixel and has a standard deviation of 0.1. This aims
 15 to focus the contributions close to where the circles used by the
 16 original RICI descriptors would be. These Gaussian weights
 17 are visualised in Figure 7(b). The second weighting factor is
 18 the cosine of the angle θ between the circle tangent T and in-
 19 put point cloud normal vector P_n . For a given surface, as the
 20 angle between these vectors decreases, more points will be en-
 21 countered in the proximity of the circle. Reducing the weight of
 22 these by the cosine accounts for this. The combination of these
 23 factors results, under ideal conditions, in a descriptor that is vi-
 24 sually nearly indistinguishable from a similar one computed for
 25 a triangle mesh, as is shown in Figure 8.

26 All point contributions are accumulated in a 2D histogram.
 27 The final step in the feature extraction process is to convert the
 28 accumulated floating point values into a discrete number of in-
 29 tersections. This is done by dividing the contents of each bin
 30 by a constant factor c that depends on the density of the input
 31 point cloud, and thus the method and settings by which the point
 32 cloud is acquired. For this benchmark, we determined c experimen-
 33 tally as the factor that minimises the difference between all
 34 nonzero bins for the same descriptor computed using the MICI
 35 and RICI method for a large set of sample descriptors.

36 4. Results and discussions

37 The results of the experiments defined in Table 1 are now
 38 presented for all participating methods. For these results, the
 39 following parameters have been used:

- 40 • Parameters for filters:

- 41 – Fixed Gaussian noise: standard deviation of 0.001.
- 42 – Vertex perturbation (alternate triangulation in the
 43 original): same as original ShapeBench [3].
- 44 – Multi-view occlusion: angle between viewpoints
 45 varies between 0 and 90 degrees.
- 46 – For Experiment 9, the number of clutter objects was
 47 reduced to 2 instead of the usual 10 for a clutter filter.

- 48 • Parameters for methods:

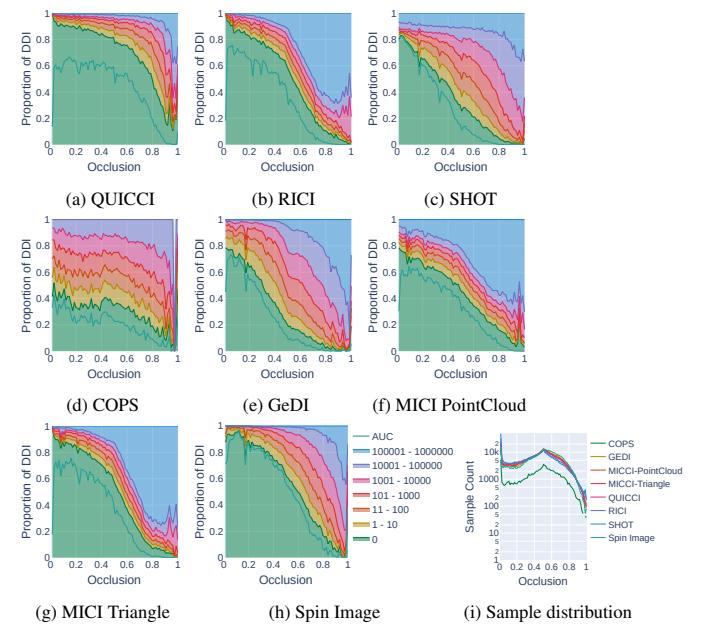
- 49 – QUICCI: support radius 0.39.
- 50 – RICI: support radius 0.255.
- 51 – SHOT: support radius 0.15.

- 52 – COPS: support radius 0.5 (for training).
- 53 – GeDI: support radius 0.5 (for training).
- 54 – Spin image: support radius 0.81.
- 55 – MICI: Level threshold set to 166.6, support radius
 56 was 0.5 (MICI Triangle was also run at this support
 57 radius to be able to compare maximum achievable
 58 performance vs point cloud performance).

59 One other parameter of note is that vertex counts of point
 60 clouds provided to GeDI and COPS by the benchmark were
 61 scaled to 10% and 5%, respectively. Running both of these
 62 methods at full resolution proved intractably slow. The refer-
 63 ence descriptor set of COPS was also limited to 250,000 de-
 64 scriptors for a similar reason. The latter does cause some prob-
 65 lems with comparing its performance to other methods. How-
 66 ever, based on experience the DDI=0 line should approximately
 67 be correct, but other subdivisions may shift had the full reso-
 68 lution been used instead. While this measure provides these
 69 methods with less information, we believe any practical appli-
 70 cation of them would require similar measures. Comparisons to
 71 other methods should therefore be possible.

72 4.1. Level 1 experiments

73 The first level investigates the effect of specific adverse con-
 74 ditions in isolation of others, where each experiment applies
 75 a single filter. For each experiment, the observed effect on
 76 the DDI metric is shown for each tested method. The colours
 77 show the distribution of DDI values, with green representing
 78 DDI = 0. A higher proportion of low DDI values corresponds
 79 to a more effective local descriptor. Therefore, the greener the
 80 chart, the more effective the local descriptor is. Each chart
 81 also contains the commonly used Area under Precision-Recall
 82 curves (AUC) metric.



90 Fig. 9: Results for Experiment 1 (Occlusion). Figure 9i shows the number of
 91 sample points per histogram bin.

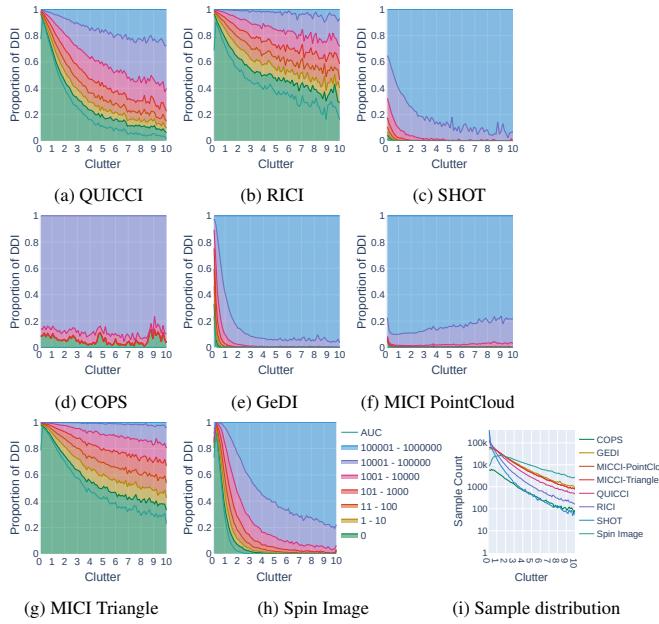


Fig. 10: Results for Experiment 2 (Clutter). Figure 10i shows the number of sample points per histogram bin.

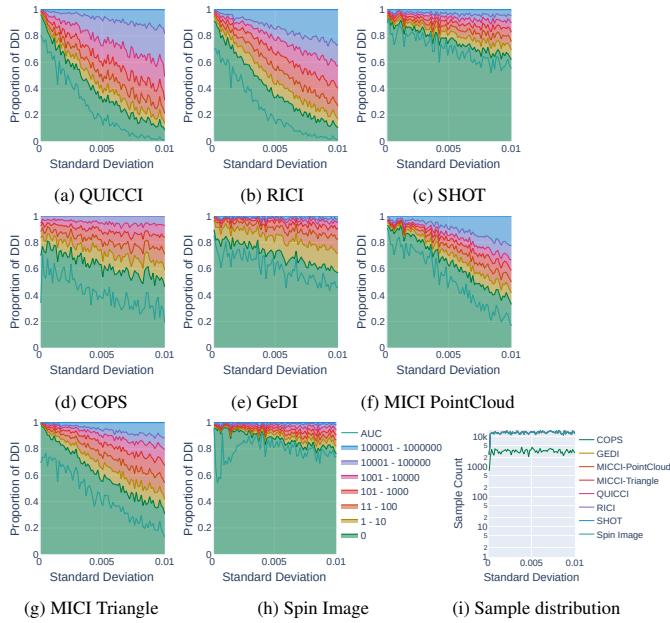


Fig. 11: Results for Experiment 3 (Gaussian Noise). Figure 11i shows the number of sample points per histogram bin.

The effects of occlusion are shown in Figure 9. The Spin Image, RICI, and QUICCI outperformed the other methods. GeDI and SHOT rely on point cloud neighbourhoods for their shape representation, which are degraded by the filter. Visual descriptors like COPS are also not robust to geometrical occlusion.

The results for clutter can be seen in Figure 10. Here MICI Triangle and RICI outperform the other methods, followed by QUICCI. These descriptors were specifically designed to be robust to clutter, which is evident here. The other methods show little to no ability to resist clutter.

When subjected to normally distributed vertex perturbations,

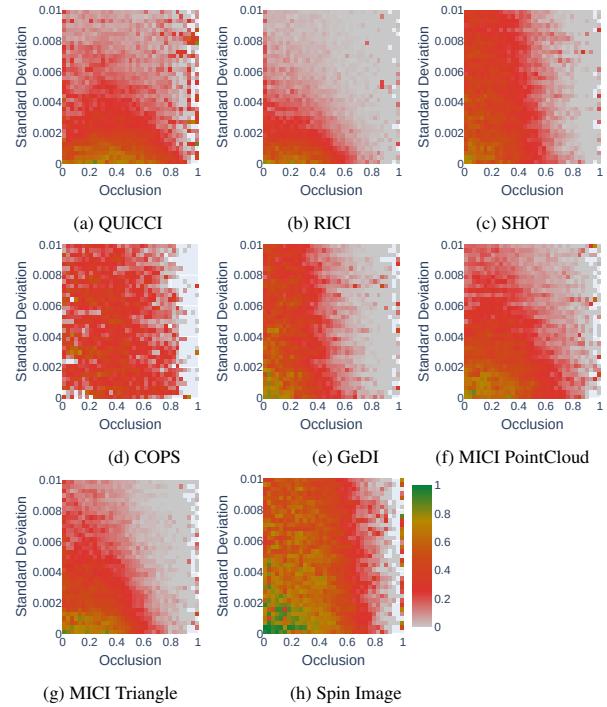


Fig. 12: Heatmaps of results for experiment 4 (Occlusion + Gaussian noise).

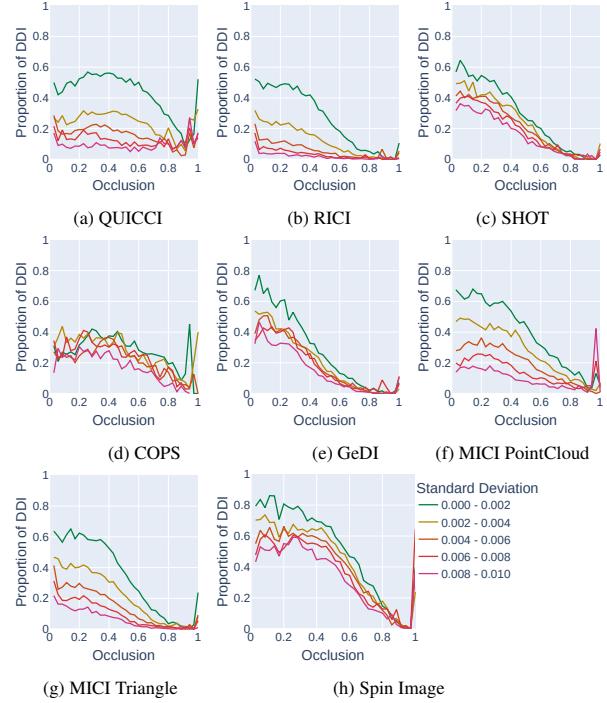


Fig. 13: Line curves of results for experiment 4 (Occlusion + Gaussian noise).

Figure 11 shows that the Spin Image is the most robust in this test. This can be explained by its subdivision of contributions of incoming vertices having a smoothing effect, and large support radius. In contrast, SHOT has impressive performance despite its small support radius. Learned neural networks work as smoothed regression functions, which could explain their robustness to noise. COPS may also benefit here from that visual

12
13
14
15
16
17
18

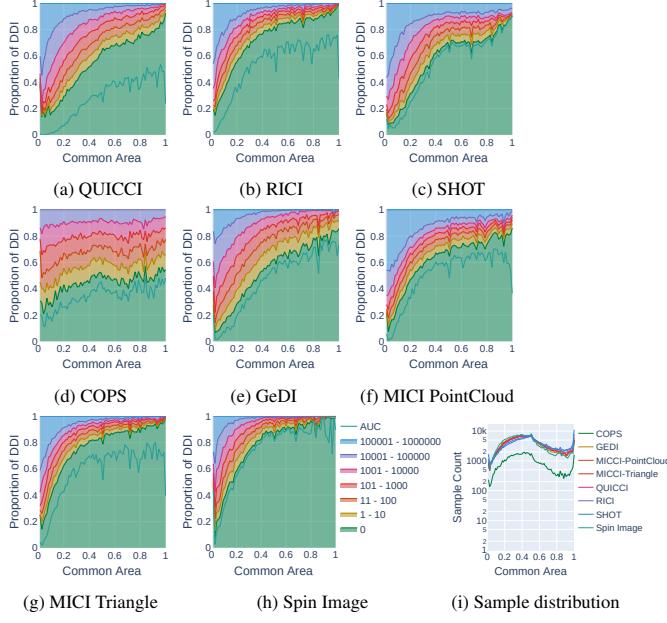


Fig. 14: Results for Experiment 5 (occlusion on both meshes). Figure 14i shows the number of sample points per histogram bin.

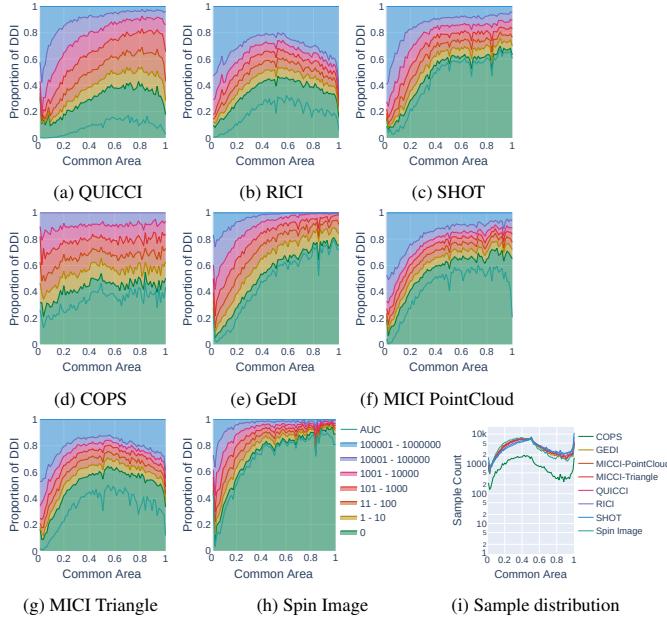


Fig. 15: Results for Experiment 6 (occlusion and Gaussian noise on both meshes). Figure 15i shows the number of sample points per histogram bin.

1 features are independent to geometrical noise. Finally, QUICCI
2 and RICI are more susceptible to changes in the geometry, and
3 thus they obtain worse results compared to the other methods.

4 4.2. Level 2 experiments

5 The second level experiments investigate the effect of combinations
6 of filters. Two sets of plots (heatmaps and line curves)
7 are computed for each experiment, showing the same results
8 from different perspectives. To simplify visualisation, these
9 charts focus on the fraction of cases where the DDI = 0. In the
10 heatmaps, this proportion is represented by a colour map, where

11 green indicates a proportion equal to 1 (the optimal result). The
12 line charts group results by their values on the vertical axis.

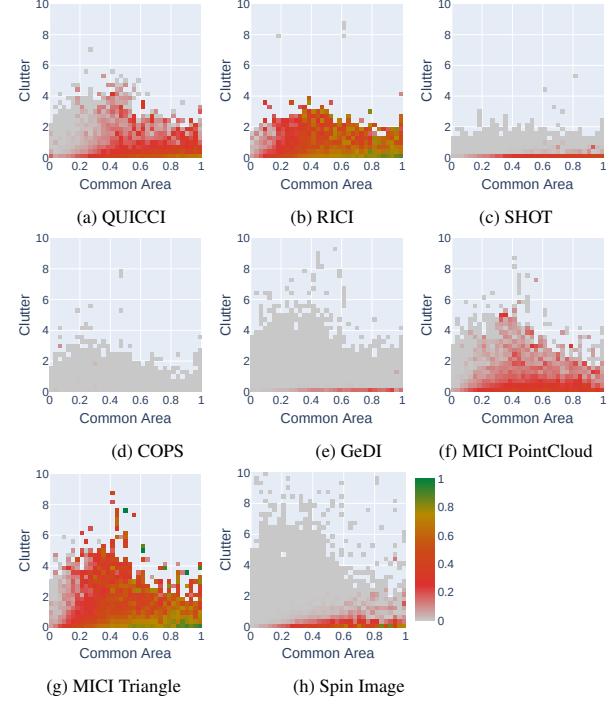


Fig. 16: Results for Experiment 7 (occlusion on both objects, clutter in scene).

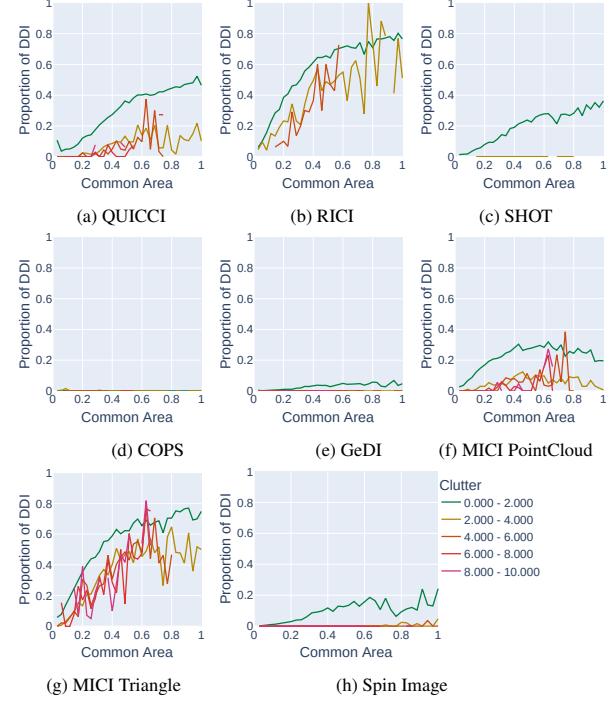


Fig. 17: Results for Experiment 7 (occlusion on both objects, clutter in scene).

13 When Occlusion is combined with Gaussian noise, Figures
14 12 and 13 show that the Spin Image obtains the best results,
15 followed by MICI (both versions). As Spin Image behaves well
16 in both filters separately, one would expect it to have good
17 robustness to both filters. GeDI also shows some robustness for

1 low levels of noise and occlusion, which is also inherited from
2 its robustness to Gaussian noise.

3 Experiments 5 and 6 both apply an occlusion filter on the
4 model and scene objects, but ensure the maximum angle be-
5 tween the viewing directions is at most 90° . The occlusion fac-
6 tor for the surface visible from both points of view is used as
7 the independent variable. Where the two experiments differ is
8 that Gaussian noise with a fixed standard deviation is applied in
9 experiment 6.

10 The results for experiment 5 are shown in Figure 14, and
11 those for experiment 6 in Figure 15. In the case of the former,
12 the conclusions are in line with those from experiment 1, al-
13 though performance here is generally better. We conjecture that
14 this is improvement caused by the filter generating occluded
15 meshes from similar points of view, inadvertently making the
16 model and scene objects more similar to one another than cor-
17 responding objects would be in experiment 1. When noise is
18 added in experiment 6, the methods which were found to suf-
19 ffer most from its effects in experiment 3 are also those most
20 affected by it here.

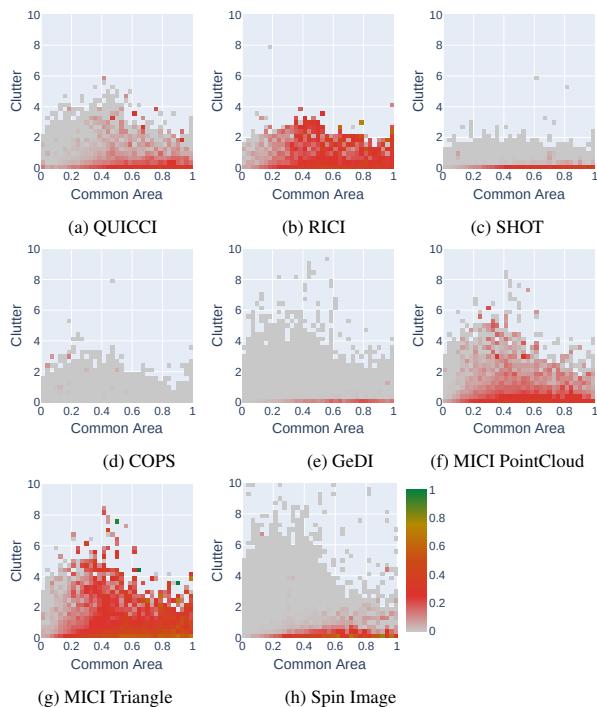


Fig. 18: Results for Experiment 8 (occlusion and Gaussian noise on both objects, clutter in scene).

21 The filters applied in experiments 7 and 8 are similar to those
22 of 5 and 6, except for the addition of a clutter filter being to
23 the scene object. The results for experiment 7 are shown in
24 Figures 16 and 17, and those for experiment 8 in Figures 18
25 and 19.

26 As was shown in experiment 2, the COPS, SHOT, GeDI,
27 MICI PointCloud, and to a lesser extent the Spin Image, are
28 all affected by clutter. The methods that are the least robust to
29 it are also those which suffer the most in both of these ex-
30 periments. After adding noise in experiment 8, a similar drop is
31 observed as to the one from experiment 5 to 6. Out of all tested

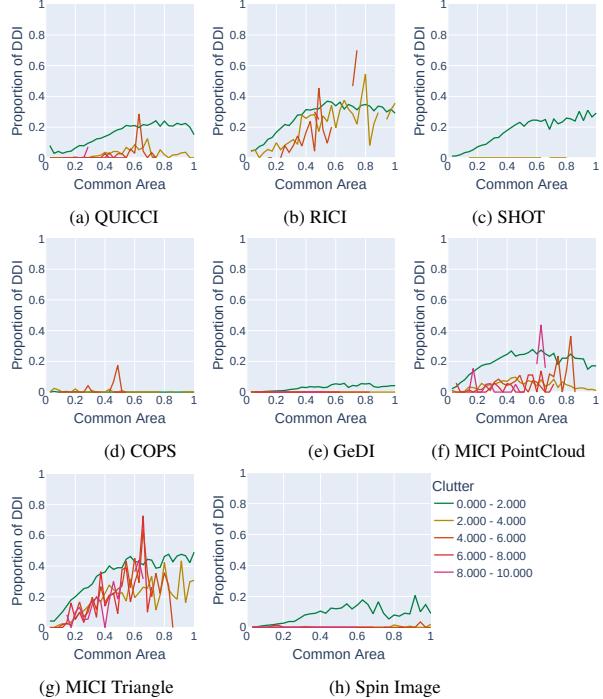


Fig. 19: Results for Experiment 8 (occlusion and Gaussian noise on both ob-
jects, clutter in scene).

32 methods, MICI Triangle and RICI are the only methods that can
33 handle all applied filters.

4.3. Level 3 experiment

34 The third level aims to simulate a combination of artefacts
35 commonly found in real-world 3D captures. Tested methods
36 are subjected to a combination of occlusion, a fixed amount
37 of Gaussian noise, vertex perturbations, and a small amount of
38 clutter. The observed values for these results have been clas-
39 sified into a ‘high’ and ‘low’ category for easier interpretation.
40 The results are shown in Figure 20.

41 No single 3D local descriptor could effectively handle high
42 levels of all filters combined. MICI-Triangle and the Spin Im-
43 age perform best with high levels of clutter, although the overall
44 effectiveness remains low. GeDI performs well when not much
45 clutter is present.

4.4. Execution Times

46 The results for the measured execution times are shown in
47 Figures 21 and 22. It should be noted that these charts show
48 results for triangle, point cloud, and learning based methods.
49 Learning based methods utilise the GPU, while the remain-
50 der were run exclusively single-threaded on the CPU. Results
51 for descriptor generation throughput for CPU and GPU-based
52 methods can therefore not be compared directly.

53 All execution time results were measured on a system with
54 an AMD Ryzen 9 3900X CPU and an Nvidia Quadro P5000
55 GPU. CPU frequency boosting was disabled to ensure the pro-
56 processor maintained a constant execution speed (3.8GHz). Exe-
57 cution was further limited to a single core through the operating
58 system to avoid slowdowns from core switching.



Fig. 20: Results for Experiment 9. DDI=0 curves are computed for all data points that fall above or below threshold values for each of the three independent variables in this experiment. Occlusion values above 0.3 are labelled as ‘high’, and ‘low’ otherwise. Clutter values between 0 and 1 are considered ‘low’, and ‘high’ between 1 and 2. Vertex displacements between 0.07 and 0.15 are considered ‘high’.

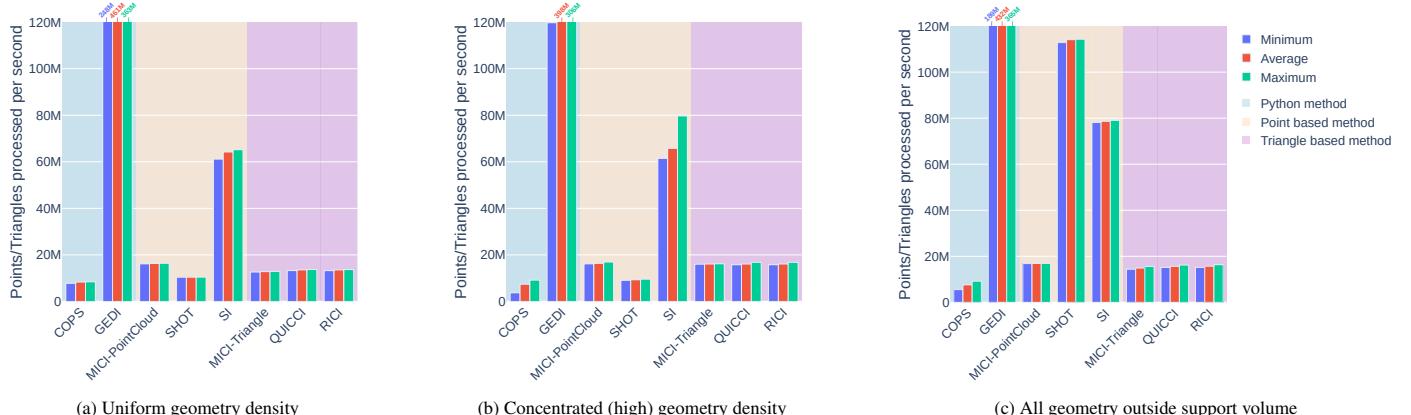


Fig. 21: Throughput of descriptor generation for different synthetic scenes. In Fig. 21a uniform density geometry within the support volume; In Fig. 21b high density geometry within the support volume; In Fig. 21c geometry outside the support volume.

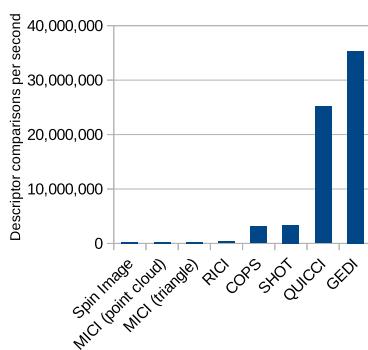


Fig. 22: Number of descriptors compared per second for each tested method.

In terms of the observed generation speed, GEDI is clearly the fastest of the learning-based methods. The Spin Image is the fastest of the CPU-based implementations. The only exception can be seen in Figure 21c, where the SHOT descriptor appears to be much faster at discarding points outside its support volume. Cylindrical support volume methods such as the Spin Image and MICL must perform more calculations to determine whether a point or triangle intersects their support region, and receive a comparatively small uplift. Only the synthetic meshes were used for measuring execution time.

In terms of comparison speed as shown in Figure 22, GEDI is again the fastest method. However, here QUICCI takes a comparatively close second place. These results have all used CPU implementations, and are thus comparable. The wide margin between GEDI, QUICCI, and the others can be explained by

1 their comparatively small size. The gap between them may be
 2 due to GEDI requiring fewer instructions to be compared, and
 3 its ability to better utilise vector instructions.

4 The estimated overhead was effectively zero for all methods.
 5 We have therefore not included these results in a separate chart.

6 4.5. Discussion

7 From the obtained results it is clear that clutter is particu-
 8 larly challenging for deep learning because there is a change of
 9 paradigm from a single object to a scene. Figures 13c and 15c
 10 highlight that SHOT is also not clutter resistant. As soon as the
 11 clutter filter is added, its performance decreases immediately.
 12 The same effect is observed in the clutter vs occlusion and clutter
 13 vs Gaussian noise heatmaps of the original paper.

14 The MICI methodology also displays exceptionally poor
 15 matching performance in cluttered scenes, while its correspond-
 16 ing triangle input version performs well. This can be attributed
 17 to the benchmark enforcing a maximum number of vertices per
 18 sampled point cloud, which results in a much lower point den-
 19 sity per pixel when a number of clutter objects are added into
 20 the scene. Had this limit not been in place, we conjecture that
 21 performance penalty relative to the triangle input would have
 22 been similar to the one observed in the occlusion experiment.

23 Overall, it looks like methods tailored for local description,
 24 such as QUICCI, are less sensitive to dramatic perturbation.
 25 However, QUICCI and RICI “focus” on specific places where
 26 they expect to see changes in the intersection count. Adding
 27 noise causes those locations to become misaligned, and thus no
 28 longer match. This also explains their somewhat poor resistance
 29 to Gaussian noise, but it is these characteristics that also al-
 30 low them to ignore any clutter. Interestingly, the higher support
 31 radius MICI Triangle variant performed better than RICI, de-
 32 spite only using a different support radius. This implies that the
 33 methodology for determining this radius used by ShapeBench
 34 may not be optimal, and that a higher radius means that the
 35 same vertex shifts caused by Gaussian noise are not as impact-
 36 ful compared to methods using a smaller radius instead.

37 Note that the current benchmark is evaluated independently
 38 of the grouping of the models into classes. Our approach to
 39 the analysis based on the DDI measure makes this benchmark
 40 considerably different from the SHREC 2013 one [1].

41 Another interesting observation is that our results were gen-
 42 erated using a different root random seed from the original
 43 ShapeBench paper, but the resulting charts were highly simi-
 44 lar (with some amount of noise depending on the filter used).
 45 This is evidence that the results are sufficiently quantitative.

46 5. Conclusions

47 This SHREC 2025 track on partial retrieval evaluated seven
 48 methods, including two methods rooted in deep learning. Gen-
 49 erally, QUICCI, Spin Images and GeDI are robust to noise and
 50 occlusions. The benchmark is fully open and self-contained,
 51 permitting the modularity of testing other descriptors/methods.
 52 However, the size of the dataset (approximately 8.9 TB) re-
 53 quires adequate storage space and for some methods was nec-
 54 essary to decimate the data.

55 As a future development, we would consider reducing the
 56 dataset to 200-300 GB and analysing how well results are main-
 57 tained when scaling down the number of objects used in the
 58 evaluation. In addition, from the experiments, it appears that a
 59 challenge for deep learning methods is the creation of ad hoc
 60 datasets that enable training a model over complex scenes. This
 61 suggests that, being completely deterministic, this benchmark
 62 could be adapted to generate the training scenes.

63 Acknowledgments

64 This work was funded by ANID - FONDECYT - Project
 65 1230448 (Benjamin Bustos and Ivan Sipiran), and by ANID
 66 - Millennium Science Initiative Program - Code ICN17_002
 67 (Benjamin Bustos). This work was partially supported by
 68 the Italian Ministry of Business and Made in Italy (MIMIT)
 69 project, House of Emerging Technologies Genoa (CTEGE):
 70 Digital factory for culture, 2023-2025 (Silvia Biasotti and Gior-
 71 gio Palmieri). A total of 28 202 CPU hours were provided by
 72 the IDUN cluster [22] (Bart Iver van Blokland). This work was
 73 also supported by National Center for Artificial Intelligence
 74 CENIA FB210017, Basal ANID, Chile.

75 References

- [1] Sipiran, I., Meruane, R., Bustos, B., Schreck, T., Johan, H., Li, B., et al. SHREC’13 track: Large-scale partial shape retrieval using simulated range images. In: Eurographics 2013 Workshop on 3D Object Retrieval (3DOR’13). Eurographics Association; 2013, p. 81–88.
- [2] Marini, S., Paraboschi, L., Biasotti, S. Shape retrieval contest 2007: Partial matching track. SHREC (in conjunction with IEEE Shape Modeling International) 2007;:13–16.
- [3] van Blokland, BI. Shapebench: A new approach to benchmarking local 3D shape descriptors. Computers & Graphics 2024;124:104052.
- [4] Deitke, M., Schwenk, D., Salvador, J., Weih, L., Michel, O., Vander-
Bilt, E., et al. Objaverse: A Universe of Annotated 3D Objects . In:
2023 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society; 2023, p.
13142–13153.
- [5] Hao, L., Yang, X., Xu, K., Yi, W., Shen, Y., Wang, H. Rotational
voxels statistics histogram for both real-valued and binary feature repre-
sentations of 3d local shape. Journal of Visual Communication and Image
Representation 2023;93:103817.
- [6] Bibissi, DL., Yang, J., Quan, S., Zhang, Y. Dual spin-image: A bi-
directional spin-image variant using multi-scale radii for 3d local shape
description. Computers & Graphics 2022;103:180–191.
- [7] Zhao, H., Tang, M., Ding, H. Hoppf: A novel local surface descriptor for
3d object recognition. Pattern Recognition 2020;103:107272.
- [8] Yang, J., Zhang, Q., Xiao, Y., Cao, Z., Toldi: An effective and robust ap-
proach for 3d local shape description. Pattern Recognition 2017;65:175–
187.
- [9] Salti, S., Tombari, F., Di Stefano, L. Shot: Unique signatures of his-
tograms for surface and texture description. Computer Vision and Image
Understanding 2014;125:251–264.
- [10] Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, NM.
A comprehensive performance evaluation of 3d local feature descriptors.
International journal of computer vision 2016;116:66–89.
- [11] van Blokland, BI., Theoharis, T. Radial intersection count image: A clutter
resistant 3D shape descriptor. Computers & Graphics 2020;91:118–
128.
- [12] van Blokland, BI., Theoharis, T. An indexing scheme and descriptor for
3D object retrieval based on local shape querying. Computers & Graphics
2020;92:55–66.
- [13] Logoglu, KB., Kalkan, S., Temizel, A. Cospair: colored histograms of
spatial concentric surflet-pairs for 3d object recognition. Robotics and
Autonomous Systems 2016;75:558–570.

1 [14] Guo, Y, Sohel, F, Bennamoun, M, Wan, J, Lu, M. A novel local surface
2 feature for 3d object recognition under clutter and occlusion. *Information*
3 *Sciences* 2015;293:196–213.

4 [15] Johnson, A, Hebert, M. Using spin images for efficient object recogni-
5 tion in cluttered 3D scenes. *IEEE Transactions on Pattern Analysis and*
6 *Machine Intelligence* 1999;21(5):433–449.

7 [16] Poiesi, F, Boscaini, D. Learning general and distinctive 3D local deep
8 descriptors for point cloud registration. *IEEE Transactions on Pattern*
9 *Analysis and Machine Intelligence* 2023;45(3):3979–3985.

10 [17] Yang, J, Zhang, Q, Xiao, Y, Cao, Z. Toldi: An effective and robust ap-
11 proach for 3D local shape description. *Pattern Recognition* 2017;65:175–
12 187.

13 [18] Qi, CR, Yi, L, Su, H, Guibas, LJ. Pointnet++: deep hierarchi-
14 cal feature learning on point sets in a metric space. In: *Proceedings*
15 of the 31st International Conference on Neural Information Processing
16 Systems. NIPS’17; Red Hook, NY, USA: Curran Associates Inc. ISBN
17 9781510860964; 2017, p. 5105–5114.

18 [19] Garosi, M, Tedoldi, R, Boscaini, D, Mancini, M, Sebe, N, Poiesi,
19 F. 3D part segmentation via geometric aggregation of 2D visual fea-
20 tures. *IEEE/CVF Winter Conference on Applications of Computer Vision*
21 (WACV) 2025;.

22 [20] Oquab, M, Darcret, T, Moutakanni, T, Vo, HV, Szafraniec, M, Khalidov,
23 V, et al. DINOv2: Learning robust visual features without supervision.
24 2023.

25 [21] Darcret, T, Oquab, M, Mairal, J, Bojanowski, P. Vision transformers
26 need registers. 2023.

27 [22] Själander, M, Jahre, M, Tufte, G, Reissmann, N. EPIC: An Energy-
28 Efficient, High-Performance GPGPU Computing Research Infrastructure.
29 2024. URL: <http://arxiv.org/abs/1912.05848>; arXiv:1912.05848
30 [cs].