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A B S T R A C T

The ShapeBench evaluation methodology is proposed as an extension to the popular
Area Under Precision-Recall Curve (PRC/AUC) for measuring the matching perfor-
mance of local 3D shape descriptors. It is observed that the PRC inadequately accounts
for other similar surfaces in the same or different objects when determining whether a
candidate match is a true positive. The novel Descriptor Distance Index (DDI) metric is
introduced to address this limitation. In contrast to previous evaluation methodologies,
which identify entire objects in a given scene, the DDI metric measures descriptor per-
formance by analysing point-to-point distances. The ShapeBench methodology is also
more scalable than previous approaches, by using procedural generation. The bench-
mark is used to evaluate both old and new descriptors. The results produced by the
implementation of the benchmark are fully replicable, and are made publicly available.
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1. Motivation1

The ability to compare the similarity of 3D surfaces is cru-2

cial in a number of applications, such as 3D registration [1], bin3

picking [2], Simultaneous Localisation and Mapping (SLAM)4

[3] and 3D object retrieval [4]. A wide variety of methods5

have been proposed, both in the form of traditional algorithms6

[5, 6] and, more recently, learned features [7, 8]. Evaluating the7

performance of 3D surface matching methods provides under-8

standing of their strengths and weaknesses, and is thus crucial9

for determining their practical applicability.10

This paper focuses on improving the Precision Recall Curve11

(PRC)—the most popular methodology for evaluating local 3D12

shape descriptor methods—along with its associated Area Un-13

der Curve (AUCpr) metric [9, 10, 11]. However, its application14

domain extends to any surface point matching algorithm. The15

AUCpr metric measures the extent to which a particular method16

can correctly identify models in a set of scenes. The set of mod-17

els M contains known objects. Subsets of models are placed in18

different arrangements, and exposed to various adverse condi-19
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tions, to construct the set of scenes S . A detailed description of 20

how the PRC and AUCpr are calculated is given in Section 2.1. 21

We observe several issues with the PRC methodology, and 22

how it is used to evaluate local descriptor methods in previous 23

work. Most pertinently, the PRC methodology assumes that 24

each surface point in a scene has at most one matching sur- 25

face point on exactly one specific model. This does not ade- 26

quately account for the possibility of multiple matches to exist, 27

which can be caused by the presence of self-similarity within a 28

model, or different models containing partially similar geome- 29

try. The methodology can therefore count true positives as false 30

positives. An example of an object commonly used in previ- 31

ous evaluations exhibiting self-similarity is shown in Figure 1. 32

Computing a ground truth of all surface matches is computa- 33

tionally intractable. 34

The ShapeBench methodology is proposed to address this, 35

which—in contrast to previous work—measures the matching 36

performance of a local 3D shape descriptor by comparing dis- 37

tances between individual descriptor pairs. The descriptors are 38

computed for corresponding points on a model, and a modified 39

version of the same model that constitutes the scene. Using this 40

approach avoids the need to compute all ground truth matches, 41

http://www.sciencedirect.com
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Fig. 1: All surfaces that are similar to the indicated point in the Ar-
madillo model from the Stanford 3D scanning repository according to
the RICI descriptor. A darker red colour indicates a better match.

as the same point on two variants of the same surface is always a1

known match. The novel Descriptor Distance Index (DDI) met-2

ric is also proposed as a means to contextualise the computed3

distances between descriptor pairs, by quantifying the degree4

to which one descriptor can distinguish its counterpart from5

noise. The DDI is intended to be used in conjunction with the6

PRC, and can assist in explaining observed performance by the7

PRC, and visualise how performance degrades when a method8

misidentifies a nearest neighbour point.9

Another motivation for comparing a model against a modi-10

fied counterpart is that it improves the scalability of the eval-11

uation methodology. Previous work has commonly relied on12

datasets of captured 3D data. The results presented in this arti-13

cle show that the quantity and variety of objects in these datasets14

is likely insufficient. Table 1 contains an overview over various15

recently proposed methods, along with all datasets used to eval-16

uate them. These datasets contain at most 8 different models,17

and several also share the same model set.18

The issue of quantity can in theory be rectified by using19

larger, more varied, datasets. However, datasets consisting of20

real world 3D scans scale poorly. Each scene must be con-21

structed, captured, and stored separately. Multiple datasets22

available today containing only single objects require more than23

a terabyte to store, such as the ABC and Objaverse datasets24

listed in Table 1. An associated set of scenes would require a25

multiple of that. The proposed ShapeBench methodology there-26

fore constructs scenes in a procedural and replicable manner,27

only requiring a set of models as input. Scenes are generated28

using a sequence of one or more filters, each simulating real29

world adverse conditions.30

The use of artificial data has the added benefit that the ef-31

fect of different adverse matching conditions can be studied in32

isolation. Real data often inherently contains combinations of33

these. One downside of artificial data is that multiple effects34

that naturally occur in real scans must now be approximated or35

simulated through one or more filters instead.36

2. Related work37

An overview is provided over different metrics and evalua-38

tion methodologies that have been used in previous work, with39

a special focus on the PRC methodology. A brief description 40

is also given of the methods that were used to test the proposed 41

ShapeBench benchmark in Section 5. 42

2.1. The PRC methodology 43

An overview over the procedure for computing the PRC and 44

the associated AUC metric is given here. Because implementa- 45

tion details of the PRC vary, the version described by Guo et al. 46

[5] is used as a reference. 47

For computing the PRC, a set of points PS ⊆ S is randomly 48

sampled from the surface of the scene S , which may be done us- 49

ing a keypoint detector. Using known ground truth transforma- 50

tions, another set PM = {T (q) : q ∈ PS is constructed of model 51

surface points that correspond to those in PS , where T (q) is the 52

ground truth transformation that transforms the point q into the 53

coordinate space of the model it belongs to. 54

After computing a feature vector for each point in PS and PM 55

using the method being tested, the closest two points in feature 56

space pm1 and pm2 are found in PM for each point ps in PS . 57

Using these, the nearest neighbour distance ratio, σ, is defined 58

in Equation 1, where f (p) denotes a feature vector for a given 59

point p, and d( f1, f2) a function computing the distance between 60

two feature vectors. 61

σ =
d( f (ps), f (pm1))
d( f (ps), f (pm2))

(1)

If the value of σ is below a threshold τ, the point pair ps 62

and pm1 is considered a match. For the point to be counted as 63

a true match, two conditions must also be satisfied. Condition 64

1 requires that both points correspond to the same object, and 65

condition 2 that the Euclidean distance between T (ps) and pm1 66

is less than half of the support radius. The support radius of a 67

local shape descriptor is a parameter that determines the size of 68

the support volume, usually a sphere or cylinder. All surfaces 69

within this volume are represented by the descriptor. If either of 70

these conditions is not satisfied, the pair is instead considered a 71

false positive. 72

The PRC is computed by first computing the values of σ, 73

and the two criteria, for each corresponding point pair in PS 74

and PM . Varying the value of τ between 0 and 1, and comput- 75

ing the Precision and Recall for each point ps, yields the PRC 76

curve. Precision and Recall are defined in equations 2 and 3, 77

respectively. The area below this curve constitutes the derived 78

Area Under Curve (AUCpr) metric. 79

Precision =
|true matches|

|true matches| + |false positives|
(2)

Recall =
|true matches|

|corresponding ground truth points|
(3)

The distance threshold τ was initially proposed by Lowe [26] 80

for determining whether a database of keypoints contained a 81

good match for a given query. Distinctive descriptors tend to 82

only have a single good nearest neighbour, causing the σ ratio 83

to be low. The threshold was later adopted for evaluating 3D 84

descriptors [27, 28]. 85
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Dataset Information Used in Evaluation
Dataset Model Set Models Scenes [10] [12] [9] [13] [14] [11]
Bologna 3D Retrieval (B3R) [15] Stanford 6 18 Yes - Yes Yes Yes Yes
Random Views [15] Stanford 6 36 - - Yes - - -
Bologna Dataset 1&2 - Stanford [16] Stanford 6 45 - Yes Yes - - -
UWA 3D Modelling UWA 4 75 Yes - - Yes1 Yes -
UWA Object Retrieval [17, 18] UWA 5 50 Yes Yes - Yes Yes Yes
Bologna Dataset 3 - SpaceTime Stereo [16] Kinect (+ clutter) 8 15 - - Yes - - Yes
Bologna Dataset 5 - Kinect [19] Kinect (+ clutter) 6 16 Yes - Yes1 - - -
Bologna Object Recognition Kinect (+ clutter) 6 17 - Yes - - - -
Bologna Mesh Registration Kinect 6 95 Yes - - Yes - -
Queens LiDAR [20] Queens 5 63 - Yes - - - -
7-scenes [21] 7-scenes 7 n/a - - Yes - - -
DTU [22] DTU 45 3,204 - - - - - -
ShapeNetCore [23] ShapeNetCore 51,300 n/a - - - - - -
ABC [24] ABC 1,000,000 n/a - - - - - -
Objaverse [25] Objaverse 798,759 n/a - - - - - -

Table 1: An overview over datasets used for the evaluations in a number of recent papers, as well as some examples of larger datasets. Datasets that were not used
in a particular evaluation are marked with a hyphen (-) for visual clarity. All datasets with equivalent model set names use the same (sub)set of models.

2.2. Evaluation methodologies1

While only the PRC methodology has been discussed in de-2

tail, it is not the only one which has been used for evaluating3

descriptors to date. We therefore highlight some other notable4

metrics here.5

A classic metric is the Receiver Operating Characteristics6

(ROC), developed during the second world war to evaluate the7

performance of radar operators. This metric plots the true pos-8

itive rate against the false positive rate, where the true positive9

rate is equivalent to the recall metric in Equation 3. While not10

a common occurrence, the metric has seen use in the form of a11

confusion matrix [29, 30, 17]. The area under the ROC curve12

can be used as an aggregate metric for the overall performance13

of a tested method [31], in a similar fashion to the PRC..14

Another metric that has been used is the Cumulative Match15

Characteristic (CMC) [7, 32], which uses a fixed number of16

query descriptors and their corresponding lists of nearest neigh-17

bours in feature space to compute the fraction where the ground18

truth nearest neighbour is in the top n nearest neighbours. The19

fraction is subsequently plotted for varying values of n. Van20

Blokland et al. use a variation of this metric [33, 34], comput-21

ing the CMC solely for n = 0, and plotting the variation of its22

value across a number of scenes.23

Whereas the PRC approach uses the area underneath the24

precision-recall curve to compute an overall performance met-25

ric, Buch et al. instead used the maximum F1 score [35], de-26

fined as the maximum harmonic mean across all the computed27

precision-recall values.28

2.3. Local 3D Shape Descriptors29

3D descriptors are commonly classified into global and local30

descriptors. Global descriptors aim to represent an entire model31

1The information provided in the paper was insufficient to accurately deduce
which exact dataset was used. A best guess has been used instead.

in a single descriptor. This has a clear space advantage over lo- 32

cal descriptors, which use many descriptors to represent smaller 33

portions of an object. However, local descriptors tend to be less 34

sensitive to challenging matching conditions such as occlusion 35

[36]. They also rely on an object being segmented from the en- 36

vironment. Examples include the SSCD [37] and PANORAMA 37

[38] descriptors. Local descriptors are often combined with 38

keypoint detectors to first locate distinct points of interest in 39

a scene in order to reduce the volume of descriptors that need 40

to be computed and compared. 41

One of the earlier local 3D shape descriptors is the Spin Im- 42

age [39], proposed by Johnson and Hebert. The descriptor is a 43

histogram that computes the distribution of points in the cylin- 44

drical coordinate space described by a given keypoint and its 45

associated normal vector. Tombari et al. proposed the Unique 46

Shape Context (USC) [16], which uses a spherical support vol- 47

ume subdivided into partitions along the azimuth, elevation, and 48

radial directions. A histogram is subsequently computed over 49

the surface points in the support volume that fall into each bin, 50

scaled by the local density of each point. The method is an ex- 51

tension to the 3D Shape Context [40], and addresses its primary 52

limitation by using a local reference frame to orient the support 53

volume of the descriptor in a repeatable manner. 54

The Signature of Histograms of OrienTations (SHOT) [19] 55

proposed by Salti et al. uses the same local reference frame and 56

spatial subdivision of its support volume as the USC descriptor. 57

In contrast to USC, SHOT accumulates histograms of cosines 58

for each spatial bin. These cosines are computed between the 59

normal vectors of surface points and the orientation of the de- 60

scriptor. 61

The Rotational Projection Statistics (RoPS) descriptor pro- 62

posed by Guo et al. [41] also uses a local reference frame to 63

orient the points present in the support volume. These points 64

are subsequently rotated in several increments along each ma- 65

jor axis. For each rotated point cloud, all points are projected on 66

the xy, yz, and xz planes, and a histogram is computed over their 67
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distribution. Various statistics are computed and concatenated1

to form the RoPS descriptor.2

The Radial Intersection Count Image (RICI) descriptor pro-3

posed by van Blokland and Theoharis [33] is a histogram util-4

ising variations in the number of intersections between circles5

and the object surface. The same authors noticed that inter-6

section counts do not vary between most adjacent circles, and7

therefore proposed a more compact binary version of the de-8

scriptor, called the Quick Intersection Count Change Image9

(QUICCI) [34].10

Other relevant examples of local 3D shape descriptors in-11

clude the Fast Point Feature Histogram (FPFH) [42], and Co-12

SPAIR [43].13

3. The ShapeBench benchmark14

The proposed ShapeBench evaluation methodology is now15

presented. Its objective is to evaluate whether a descriptor is ca-16

pable of correctly determining similarity in surface point pairs,17

and to what extent this capability is maintained when presented18

with various adverse conditions that are common in practical19

applications. In order to achieve this, it is necessary to estab-20

lish ground truth matches between surface points and their sur-21

rounding surface patches. While metrics exist for determining22

the similarity of such patches, exhaustively detecting all match-23

ing point pairs in a large dataset is intractable.24

The benchmark is therefore built around comparing point25

pairs on surfaces that are guaranteed to be a correct match: two26

copies of the exact same surface. One of these two copies is27

left unmodified and represents the model, while one or more28

alterations are applied to the other copy to create a scene ob-29

ject. These alterations are applied as a sequence of one or more30

filters, where the output of one filter is used as the input for31

the next. Filters have fixed parameters, and are agnostic to any32

other filters applied on the sample object. After the scene mesh33

is computed, the effect on the matching capability of the de-34

scriptor can be measured by the distance between the descrip-35

tor pairs computed for corresponding points on the model and36

scene objects.37

An overview over the benchmarking procedure is shown in38

Figure 2. A set of model objects is first drawn at random from39

a large dataset. For each of these models, 100 vertices are ran-40

domly selected from the object. The corresponding points on41

the scene mesh are located after the filter sequence has com-42

pleted. Note that this may cause some points to be lost if the43

portion of the surface they were located on is removed by a fil-44

ter. Each filter aims to simulate a real world phenomenon such45

as clutter (surfaces in the support volume that are not part of the46

model) and occlusion (portions of the object surface are miss-47

ing due to these not being visible from the point of view of a48

3D capturing device).49

A descriptor pair is computed for each of the remaining point50

pairs, each respectively capturing corresponding points on the51

surface of the model and scene. This results in a model de-52

scriptor Dm, and a scene descriptor Ds that has undergone some53

modification. This descriptor pair is finally used to compute the54

Descriptor Distance Index and PRC/AUC metrics.55

Each filter reports the value of the independent variable it 56

simulates. This value may either be selected at random, or must 57

be computed after the filter has completed. For example, a filter 58

altering the orientation of normal vectors will report the rotation 59

angle it randomly selected. A filter removing occluded surfaces 60

can only compute the amount of area that was removed after it 61

has been applied. The ability to vary such an independent vari- 62

able comes from running the experiment many times on many 63

different object pairs, increasing the likelihood that the variable 64

happens to have a given value of interest. It is also worth noting 65

that all independent variables must be computed on a point by 66

point basis, rather than for the entire object. Figure 3 demon- 67

strates why these values are location dependent. 68

3.1. The Descriptor Distance Index 69

The PRC was shown to be affected by the existence of mul- 70

tiple valid matches for the same surface. Accurately determin- 71

ing all these is computationally intractable. The nearest to sec- 72

ond neighbour distance ratio σ is also affected by this issue, as 73

two valid matches are likely to result in a high distance ratio. 74

A secondary metric that is used in conjunction with the PRC, 75

and avoids relying on measures that are susceptible to multiple 76

similarity is therefore desirable. The Descriptor Distance Index 77

(DDI) metric is therefore proposed. 78

In contrast to the PRC, the DDI aims to compare distances 79

between corresponding model and scene point pairs directly. 80

Unfortunately, this is not possible directly, as the computed dis- 81

tance values vary across descriptors and distance functions. An 82

additional function is therefore needed to translate descriptor 83

distances into a space that allows comparison. 84

Normalising all distances is not possible, as distance func- 85

tions do not necessarily scale linearly. Using the same distance 86

function for all methods risks disadvantaging some methods if 87

another distance function would yield better performance. It 88

is, however, possible to compare distances between a descriptor 89

and other descriptors when using the same descriptor method 90

and distance function. 91

The Descriptor Distance Index (DDI) thus relies on a large 92

set of descriptors computed for random vertices sampled from 93

randomly chosen objects from the dataset, called the reference 94

set R. The DDI for a given pair of descriptors f1, f2 is defined 95

as the cardinality of the set of descriptors from R that are closer 96

in feature space to f1 than f2. The metric therefore effectively 97

measures the extent to which f2, from the perspective of f1, is 98

indistinguishable from noise. In our experiments, the size of the 99

reference set was set to 1 000 000 descriptors. 100

The process for creating the reference set uses the same ran- 101

dom seed for all of the tested methods. Each method is therefore 102

asked to compute a descriptor for the exact same points from the 103

exact same dataset objects, which ensures that all methods are 104

tested on equal ground, and allows comparison of DDI values 105

across methods. The metric is also not sensitive to the existence 106

of multiple similar surfaces, as equivalent local surfaces should 107

produce equivalent descriptors, and only descriptors whose dis- 108

tance value is lower are counted. If f2 is computed over the 109

same surface used to compute f1 but has been altered in some 110

way, the purpose of the metric still holds because f2 is now ob- 111
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Reference descriptor set R

Model object Scene

...? ?

Mesh �lter(s)

...

Model descriptor Dm Scene descriptor Ds

Dataset

S = {Dr : d(Ds , Dr) < d(Ds , Dm), Dr ∈ R} Descriptor index
|| S ||

1 random vertex 
per object

Repeated once per model object

Repeated for each point pair

1 million objects

Sample with 
replacement

10,000 objects

1 million points

1 descriptor per 
sample point

...

up to 100 vertices up to 100 vertices

100 random vertices

Filter dependent transformation

up to 100 corresponding vertices

Fig. 2: An overview over the proposed benchmark.

Object of interest
Point A

Point B

Clutter object

Fig. 3: A demonstration of a situation where a descriptor nuisance is
localised to a portion on the object. Two descriptors are computed for
two points and their support regions are shown. The support region of
point A only contains the object of interest, while point B also contains
clutter.

jectively less distinguishable from noise from the perspective of1

f1.2

3.2. Dataset3

An appropriate dataset must be selected to serve as a model4

set and input to the matching conditions being tested by the5

filter sequence. The dataset should contain a wide variety of 3D6

data that is representative of the various use cases in which the7

tested methods may be applied.8

The Objaverse dataset [25] was selected, which covers many9

domains such as household objects, furniture and vehicles. The10

dataset contains a total of 798,759 files from which 8,124 were11

excluded due to containing a point cloud or, in a few cases,12

for failing to parse. Point clouds were excluded because sam-13

pling triangle meshes into point clouds yields more similar sur-14

faces across the two modalities compared to sampling point15

clouds into triangle meshes. The ABC dataset and ShapeNet-16

Core datasets were also considered, but both mostly consist of17

CAD drawings with limited variety or application domains.18

A derived version of the dataset was created to simplify dis-19

tribution. This version only contains vertex positions, normals20

and, for 3D meshes, the polygon definitions for each object.21

The compression format is lossless and reduced the total size22

of the dataset from approximately 8.1 TB to approximately 1.5 23

TB. 24

3.3. Parameters 25

There are various parameters that must be selected in order to 26

be able to compare matching performance in a manner that does 27

not benefit specific methods. This includes the support radius, 28

scale, and sample count used for sampling point clouds. 29

One downside of using artificial data is that there is no in- 30

formation available regarding the physical dimensions of each 31

model. One option is to use the mesh resolution as an indica- 32

tion of scale, however this approach does not yield satisfactory 33

scales for objects with a high variance in edge lengths. Ob- 34

jects are instead fitted into a unit sphere, which also aids the 35

interpretation of any relevant distances in any produced results. 36

This was achieved using the seb algorithm [44], and its publicly 37

available implementation [45]. 38

All local shape descriptors use a support volume surrounding 39

the reference point to determine which surfaces to represent. A 40

larger volume captures more surface information, but also has 41

a greater risk of including clutter. Smaller volumes risk a re- 42

duction in descriptive capability. To date there is no commonly 43

accepted or established approach to determining the support ra- 44

dius, and it is usually left up to the user to select. 45

From the perspective of fairness, a support radius determines 46

how much surface information is given to the descriptor. It is 47

inherently impossible to control the amount of information pro- 48

vided to each descriptor, as there exists variation in the shapes 49

of the support volumes across methods. The strengths and 50

weaknesses inherent to each method can affect how well a par- 51

ticular method performs in a benchmark. We thus conclude 52

that a radius must be chosen on a per-method basis, and aim 53

to choose the radius that maximises the method’s capability to 54

discriminate other non-matching descriptors. 55

The means by which this is achieved is to generate two sets 56

of 100 000 descriptors for each support radius between 0.01 and 57

1.5 (recall that all objects are fitted into a unit sphere), with in- 58

crements of 0.015. For each pair of sets, the average distance 59
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Fig. 4: An overview over the lowest, mean, and highest distances observed across all 1010 descriptor pairs (all possible pairs from two sets of 100 000 descriptors
each) for each support radius that was tested. The chosen support radius is indicated with a vertical line on each chart.

between all possible descriptor pairs in each set is computed. It1

is conjectured that the support radius that maximises this aver-2

age distance would imply that the descriptor is on average opti-3

mally capable to discriminate its descriptors. This fixed support4

radius is subsequently used for all descriptors computed for that5

method. The set of models used for computing the support ra-6

dius is different from the one used for selecting the set of models7

and reference descriptors.8

A slightly modified version of the support radius selection9

procedure was used for the USC descriptor. The mechanism10

used by this descriptor to normalise bin contributions is not ef-11

fective, and caused the average distances between descriptor12

pairs to decrease for higher support radii. The addition of a nor-13

malisation step corrected this problem. This step is only used14

during the support radius selection process.15

Another relevant parameter is the number of point samples16

used to uniformly sample the triangle meshes from the dataset17

into point clouds. This step is needed when testing methods us-18

ing these as input. The disparity between input modalities rep-19

resents to some extent a source of unfairness between methods20

that use one or the other. A low resolution point cloud contains21

less information than the triangle mesh it was sampled from,22

while a high resolution greatly increases execution time.23

Using the number of vertices or triangles, or mesh resolution24

of a mesh to set the sample count is not a good solution be-25

cause the sizes of triangles can vary significantly, even within26

certain meshes. We therefore use a sample count of 1 000 00027

per unit area. The area is calculated after fitting the object into28

a unit sphere. This ensures that all surfaces are sampled with a29

roughly equivalent resolution. To alleviate some of the effects30

of sampling noise and excessive computation time, a lower and31

upper bound of 1 000 000 and 5 000 000 points are used, respec-32

tively.33

4. Filters34

Each of the filters used for simulating various adverse match-35

ing conditions are now motivated and described in detail.36

4.1. Clutter37

This filter simulates the effects of clutter being present in the38

vicinity of the model, adding surfaces to the support volumes39

of tested descriptors that do not belong to the model itself. The40

intensity of clutter is measured using Equation 4.41

Clutter =
Non model area in support volume

Model area in support volume
(4)

The filter has been implemented by first sampling 10 clut- 42

ter objects at random from the dataset. These added objects 43

are subsequently simulated using the Jolt Physics library [46], 44

which ensures objects adhere to physical constraints such as 45

colliding with other objects and gravity. Objects are initially 46

placed in a vertical stack in the air, after which gravity is ap- 47

plied and the objects fall on to a ground plane. The simulation 48

ends when no more movement is detected. Clutter objects are 49

attracted to the sample object to increase the likelihood that the 50

objects form a pile. 51

One limitation of the Jolt Physics library is that it does not 52

support the simulation of groups of arbitrary mesh surfaces. 53

The V-HACD algorithm by Mammou et al. [47] was therefore 54

used, through its publicly available implementation [48], to first 55

subdivide each mesh into a set of convex hulls that approximate 56

the original surface. These are used as a proxy during the sim- 57

ulation. This, in rare cases, yields degenerate hulls, which are 58

removed. 59

4.2. Occlusion 60

Occlusion is the result of surfaces not being visible from the 61

point of view of a capture device, sometimes also referred to 62

as partiality. This filter renders a high resolution image of the 63

input scene from a random viewing direction, and removes any 64

triangles that are not visible in the image. The intensity of the 65

occlusion filter is given in Equation 5. 66

Occlusion = 1 −
Model area in scene in support volume

Model area in support volume
(5)

4.3. Alternate mesh resolution 67

When an object is acquired using different acquisition meth- 68

ods, such as different 3D capture devices, the resolution of the 69

produced mesh can vary due to variations in settings and hard- 70

ware limitations. Testing variations in mesh resolution is a com- 71

mon occurrence in descriptor evaluations done to date. The 72

prevalent way in which this is implemented in previous work 73

is through the use of a decimation algorithm. The specific al- 74

gorithms that are usually used for this purpose rely primarily 75

on edge and half-edge collapse, along with a greedy scheme for 76

deciding which edge to collapse next. 77
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(a) (b)

Fig. 5: Two pictures of the same object surface where the original mesh in a has
been captured by a simulated 3D capture device in b

While this achieves the desired effect of reducing mesh reso-1

lution, similar decimation rates can have an inconsistent effect2

on the mesh itself. A mesh consisting mostly of flat surfaces3

will see little physical change after reducing it to a low vertex4

count, while the same reduction applied to mesh with more or-5

ganic shapes will be far more pronounced.6

Another drawback of using decimation is that such algo-7

rithms often do not produce any of the sampling artefacts com-8

monly found when using low quality capturing equipment. An9

example of this is shown in Figure 5, where the edge is rep-10

resented unevenly due to sampling artefacts. A decimation al-11

gorithm would not be inclined to produce such meshes, as it12

attempts to maintain the shape of the mesh, and is more prone13

to simplify such ridges to sharp edges. Additionally, a low res-14

olution scanner may be able to pick up smaller details, which a15

decimation algorithm is not guaranteed to keep. We therefore16

do not consider decimation to be a good resolution reduction17

strategy that is grounded in real world phenomena.18

One potential solution that could be used instead is a remesh-19

ing algorithm, which attempts to recreate a mesh using approx-20

imately equilateral triangles with a given edge length. By using21

a target edge length that is larger than the average edge length of22

the original mesh, the resulting mesh should have fewer trian-23

gles than the original while approximating the original surface.24

However, this approach proved infeasible because a proper tar-25

get edge length is difficult to establish. Specifying the target26

edge length either as a constant or using the average edge length27

of the input mesh risks creating an excessive number of trian-28

gles. This in turn causes high computation times and memory29

requirements in different implementations of remeshing algo-30

rithms that are currently available.31

The adopted solution for this filter instead attempts to simu-32

late an ideal low resolution scanner, by rendering the scene from33

a random point of view at a resolution of 640×480 pixels. The34

depth buffer is subsequently used to reconstruct the mesh. Vari-35

ation in the mesh resolution is achieved by varying the distance36

of the object to the virtual depth camera. Due to the perspective37

projection, the object will on average cover fewer pixels in the38

depth buffer, thus being reconstructed using fewer triangles.39

4.4. Alternate triangulation40

When the same object is captured repeatedly, the produced41

mesh surface should be similar in shape when assuming the cap-42

ture quality was reasonable. However, the manner in which the43

surface is triangulated is unlikely to be similar due to various44

sources of noise during the reconstruction process. An example45

of this is shown in Figure 6. If a method should thus be able to 46

recognise an equivalent surface, it must be capable of doing so 47

irrespective of how that surface is represented. 48

Furthermore, even if a keypoint detector is able to locate the 49

same keypoint in both mesh variants, the exact location of each 50

keypoint relative to the original surface may have shifted. 51

Fig. 6: Two different 3D captures of the same object. The surfaces being rep-
resented are the same, but the positions of vertices and triangles is different
between them.

Remeshing is a good candidate for implementing a similar 52

effect to the alternate mesh resolution filter. However, as stated 53

in Section 4.3, current remeshing algorithms were not found to 54

be viable. We instead used a mesh smoothing algorithm pro- 55

posed by Surazhsky and Gotsman [49], and its implementation 56

from the CGAL library [50]. The algorithm adjusts vertex po- 57

sitions to form higher quality triangles (e.g. more equilateral in 58

shape, and similar in area), while maintaining the overall shape 59

of the mesh. The result is a similar mesh with displaced ver- 60

tices, which is in line with the objective of this filter. The in- 61

tensity of the effect of this filter is measured by computing the 62

distance to nearest vertex on the filtered mesh for each point on 63

the model surface. 64

4.5. Deviated normal vector 65

Many methods for estimating normal vectors have been pro- 66

posed to date. However, factors such as noisy input data and 67

estimation errors can propagate to deviations in the computed 68

normal vectors. Understanding how these deviations affect the 69

matching performance of a method is therefore relevant. This 70

filter adjusts all normals of the input model by computing a new 71

normal vector that deviates from the original by a uniformly 72

sampled random angle. The selected angle is chosen to be be- 73

tween 0 and 30 degrees. The azimuth direction in which the 74

normal is rotated is also chosen randomly. 75

4.6. Deviated support radius 76

Calibration or estimation errors in 3D capturing equipment 77

can cause the scale of a produced mesh to vary slightly across 78

repeated captures. Alternatively, if the support radius for a point 79

is selected using an algorithm on a per point basis, errors in the 80

radius estimation may cause a similar effect. 81

The filter scales the support radius by a randomly chosen fac- 82

tor s between 0.75 and 1.25. For the ease of implementation, 83

this is done by scaling the mesh by a factor of 2 − s, which 84

achieves the same effect. 85
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4.7. Gaussian noise1

Noise is a common occurrence in captured 3D data due to2

various sources of inaccuracies during the capturing process.3

Each vertex with a unique vertex position is displaced by a dis-4

tance sampled from a normal distribution. The displacement5

direction is chosen by computing the average direction of the6

normal vectors of all vertices sharing the same vertex posi-7

tion. The same standard deviation is used for all vertices in8

the object, whose value is selected randomly between 0.00019

and 0.01. These were chosen to be reasonable perturbations for10

what can be expected of scans of varying quality.11

5. Results12

The proposed evaluation methodology is used to evaluate the13

QUICCI, RICI, USC, Spin Image, SHOT, and RoPS descrip-14

tors. These were chosen to be a representative set of both pop-15

ular classic descriptors, while also including some that have16

been proposed more recently. The used support radius, distance17

functions, and other method specific parameters are listed in18

Table 2. The AUCpr was computed using the set of all model19

descriptors, in accordance with its implementation in previous20

work.21

The USC method should be noted specifically here. The in-22

put point clouds for this particular method were downsampled23

to 1% of the number of points used for other point cloud based24

methods. The descriptor requires the computation of a point25

density value for each point in the point cloud, which is an O(n2)26

operation. This was done because computing descriptors at the27

full point cloud resolution proved intractable. The results in28

this section for this method show that this has likely influenced29

the matching performance of this method, as it is not consis-30

tently able to identify identical geometry. We consider the re-31

sults for this method valid despite this problem, because using32

this method in a practical context would likely be done using33

a downsampled point cloud anyway. However, it is likely that34

the matching performance for the full resolution point clouds35

would be higher.36

The benchmark is run for a total of 10 filter configurations,37

one for each of the 7 presented filters where that filter is run by38

itself, and three combinations of two filters. The same root ran-39

dom seed is used for all of these configurations, which means40

that the reference set R, the set of sample objects, and the sur-41

face points sampled from those objects are all identical across42

all iterations of the benchmark process.43

Each experiment produces 1 000 000 data points, although44

depending on the filter(s) that are applied, a portion of these45

may be lost. For example, the occlusion filter removes any46

vertices that are not visible from the perspective of the cam-47

era. A plot with the distribution of sample counts is therefore48

given alongside the observed matching performance for each49

filter configuration.50

The benchmark itself was implemented in C++, using the de-51

scriptor implementations from the libShapeDescriptor library52

[52]. While the library contains GPU implementations for a53

number of the used descriptors, we found that using the CPU54

variants was more effective for the purposes of this benchmark,55

as the quantity of descriptors being computed at a time was not 56

sufficient to saturate the stream processors of the GPU with 57

work, making that path slower than using the CPU. However, 58

our implementation of the benchmark does support descriptors 59

implemented as GPU kernels. 60

5.1. Single filter experiments 61

The charts in this section measure the effect of a single filter 62

(and as such a single independent variable). Each chart con- 63

tains a visualisation of the distribution of DDI values, as well 64

as a curve showing the computed AUCpr for the same set of re- 65

sults. Values of the DDI can vary between 0 and the size of the 66

reference descriptor set, which has been set to 1 000 000. The 67

charts are constructed by first dividing the range of the x-axis 68

into 75 subdivisions. For all sample points whose x-coordinates 69

fall in each of these subdivisions, the share of DDI values that 70

falls into each order of magnitude is computed. The number of 71

samples in each order of magnitude is subsequently normalised 72

to the total number of point samples in that subdivision, which 73

yields the proportional DDI value. The AUCpr value computed 74

for each subdivision is plotted alongside these. 75

A higher proportion of low DDI values is desirable. Ideally, 76

all DDI values are zero, which would result in their relative 77

proportion being 1 for each subdivision. An example where 78

this is almost the case can be seen in Figure 10d. A DDI value 79

of 0 indicates that the method uniquely identified the correct 80

model descriptor out of all descriptors in the reference set. 81

The higher ranges of DDI values visualise how quickly 82

matching performance deteriorates, which provides more con- 83

text than a single curve. An example of this can be seen in Fig- 84

ure 11a and 11b, where only plotting the proportion of samples 85

that have a DDI of 0 would have shown both methods to be ap- 86

proximately equivalent in performance, while the proportional 87

DDI shows a more rapid decline in performance in the case of 88

the RICI descriptor. This is shown as a larger proportion of 89

higher DDI values. 90

The plots in this section indicate that values of AUCpr and the 91

fraction of results whose DDI value was measured to be 0 are 92

often similar. There are some exceptions, such as Figures 8a, 93

8b, and 12c. Limited testing indicates that these discrepancies 94

are primarily caused by a poor σ ratio. However, excluding the 95

σ ratio still left a similar gap to those seen on other plots. It may 96

be possible to explain this discrepancy by the existence of mul- 97

tiple viable matches. Its impact thus appears to be measurable, 98

but limited. 99

5.1.1. Clutter 100

Figure 7 shows the results of the experiment where solely the 101

clutter filter is applied on the model object. The RICI descrip- 102

tor is shown to be highly resistant to the effects of clutter here. 103

while USC, SHOT, and RoPS show poor resistance. We conjec- 104

ture that RoPS is rather sensitive to clutter due to the histogram 105

step using a bounding box that covers all point samples present 106

in the support volume. When clutter is added, the dimensions 107

of this bounding box change, causing the histogram to lose cor- 108

respondence with its clutter free counterpart. RoPS and SHOT 109

both also include a normalisation step, which may be sensitive 110

to the presence of clutter. 111
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Method Support radius Method specific parameters Distance Function
QUICCI 0.39 Resolution: 31×32 Weighted Hamming [51]
RICI 0.255 Resolution: 32×32 Clutter resistant squared sum of differences [33]
RoPS 0.675 Point samples per unit area: 100 000 Euclidean distance

Point sample limit: 5 000 000
Spin Image 0.81 Resolution: 32×32, support angle As: 180° Pearson correlation
USC 0.135 Resolution: J = 10, K = 14, L = 14 Euclidean distance

rmin: 0.014, δ: 0.01, sampling density: 1%
SHOT 0.15 Resolution: s = 11, λ = 8, µ = 2, R = 2 Euclidean distance

Table 2: An overview over the tested methods and the relevant parameters used.

In the case of USC, despite the contributions of individual1

points being normalised by the local point density when the2

histogram is constructed, the effect of clutter is that the val-3

ues of individual descriptor bins are increased. This in turn re-4

sults in added distance to its nearest neighbour due to the use of5

the Euclidean distance function. Clutter has a similar effect on6

the Spin Image, but the use of the Pearson Correlation distance7

function likely reduces some of the impact.8

The sample counts in Figure 7g show how the distribution of9

clutter varies across different support radii. The methods with10

larger support radii experience larger amounts of clutter more11

often, as would be expected.12

5.1.2. Occlusion13

The results for the experiment where only the occlusion fil-14

ter was applied are shown in Figure 8. Here the Spin Image15

performs best. The QUICCI and RICI descriptors demonstrate16

a capability of correctly identifying the model descriptor when17

portions of the object surface are missing. However, as dis-18

cussed previously, this comes at the cost of lower σ ratios.19

These may partially be explained in the case of the QUICCI20

descriptor by a reduction in the number of set bits (to 1, specif-21

ically) by the occlusion filter. The remaining set bits are more22

likely to better overlap with more distant neighbours, which is23

emphasised by the used weighted Hamming distance function.24

The sample count distribution shows that the occurrence of25

a partiality of 50% is common, despite the variation in support26

radii amongst the tested methods. With respect to replicability,27

there are small variations induced into the results, depending28

on which OpenGL implementation is used. We have used the29

one provided by Mesa 23.1.4. The same applies to the alternate30

mesh resolution filter.31

We compared our results for the clutter and occlusion filters32

to those presented by Guo et al. [5] in Fig. 7g and 7h. Both Fig-33

ures appear to exhibit high levels of noise, where most curves34

fluctuate to varying degrees. In contrast, our quantitative re-35

sults, computed over approximately two to three orders of mag-36

nitude more sample points, indicate that these curves should in37

most cases be monotonically decreasing with increasing levels38

of clutter and occlusion. While the authors were not able to de-39

termine one themselves, it appears that a random error is likely40

present in the data.41

For the USC descriptor, neither of the reported curves42

matches with the conclusions of our evaluation. The Spin image43

results for occlusion show some similarity, where most obser-44

vations are within an estimated error margin of 0.2 AUCpr. The 45

reported occlusion results for RoPS are in line with our own 46

results. 47

5.1.3. Alternate triangulation 48

For the alternate triangulation filter, whose results are shown 49

in Figure 9, only weak correlation was observed between the 50

average edge length (mesh resolution), and the matching per- 51

formance of the different descriptors. Of the tested descriptors, 52

RoPS and SHOT exhibit similar matching performance, with 53

USC performing best. Our testing did not show a relationship 54

between the matching performance of a descriptor, and the ver- 55

tex count of the input mesh. 56

5.1.4. Deviated normal vector 57

The deviated normal vector filter randomly chooses the an- 58

gle by which the normal vector of the scene mesh point is per- 59

turbed. This yields an even distribution of point samples across 60

the different rotation angles. The QUICCI, RICI, SHOT, and 61

Spin Image descriptors use the normal vector of a keypoint to 62

orient their histograms, and are affected by perturbations to this 63

vector, as can be seen in Figure 10. 64

The QUICCI and RICI descriptors rely on the similarity of 65

rasterised local contours (e.g. the circular shape of a bicycle 66

wheel). A rotation of the normal vector would cause the po- 67

sition of these rasterised contours to shift within the descrip- 68

tor image. We conjecture that this is the cause of the drop in 69

matching performance when the normal vector deviation angle 70

is increased. 71

A similar effect occurs in the case of the Spin Image, which, 72

instead of intersection counts, estimates the mesh surface area 73

intersecting a histogram bin, when that bin is rotated around a 74

common axis for one rotation [53]. Its improved performance 75

over the QUICCI and RICI descriptors may be explained by that 76

changes in the area intersecting with each bin with increasing 77

normal vector deviation angles are more gradual than intersec- 78

tion counts. 79

The SHOT descriptor performs better at higher normal vec- 80

tor deviation angles than the QUICCI, RICI, and Spin Image de- 81

scriptors. We conjecture that this is caused by the comparatively 82

large volume described by each histogram bin. The SHOT de- 83

scriptor does not achieve perfect matching performance when 84

the normal vector is left intact. This can be explained by that 85

the filter also modifies the normals of all vertices in the scene. 86

The SHOT descriptor uses these to compute its histograms. 87
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(b) RICI
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(c) Spin Image
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(e) SHOT
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(f) USC
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Fig. 7: The effect of varying levels of clutter on the matching performance of various descriptors. Figure 7g shows the number of sample points per histogram bin.
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(f) USC
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Fig. 8: The effect of varying levels of occlusion on the matching performance of various descriptors. Figure 8g shows the number of sample points per histogram
bin.

The USC and RoPS descriptors do not utilise the informa-1

tion of normal vectors, but their results have been included be-2

cause it shows that RoPS achieves a near perfect matching score3

when provided with effectively equivalent geometry. The same4

is true for USC, although as mentioned previously, the low reso-5

lution used for computing these descriptors appears to diminish6

its matching capabilities.7

5.1.5. Deviated support radius8

The results of the support radius deviation filter in Figure9

11 show that the different descriptors have varying sensitivity10

levels for scale and/or support radius mismatches. The per-11

formance of QUICCI and RICI can be explained with reasons12

that are similar to those outlined for the deviated normal vec-13

tor. The rasterisation done by these descriptors relies on inter-14

section counts occurring at specific distances, and when these15

are displaced by a change in scale, the observed matching per-16

formance drops. QUICCI appears to be slightly more resistant17

than RICI. The SHOT descriptor demonstrates excellent perfor-18

mance in this filter. The filter chooses the applied scale factor19

from a uniform distribution, which thus results in an approxi-20

mately constant sample distribution.21

5.1.6. Gaussian noise22

When applying varying levels of Gaussian noise, the results23

in Figure 12 show that the Spin Image and SHOT descriptor are24

highly resistant. This may for the Spin Image be explained by25

that the area (by proxy the number of sample points) does not26

change much with higher levels of noise.27

In the case of the QUICCI and RICI descriptor, the roughness28

of the surface induces additional variations in number of inter-29

section counts observed by the descriptor, reducing its ability to30

discriminate. For the USC descriptor, only 900 000 results were31

computed due to the descriptor experiencing excessive execu-32

tion times.33

5.1.7. Alternate mesh resolution 34

The final single filter experiment is applying the alternate 35

mesh resolution filter, whose results are shown in Figure 13. 36

For this filter, the centre of the sample object is placed at a ran- 37

domly selected distance from the camera. While the matching 38

performance for all methods is poor, the Spin Image appears to 39

be most resistant to the reduced reconstructed mesh resolution. 40

5.1.8. Summary 41

In order to gain an overview over how well each method per- 42

forms across the different filters, we computed a summary chart, 43

shown in Figure 14. We used a similar approach to the PRC 44

evaluation methodology, by computing the area underneath the 45

curve where DDI is 0. It should be noted that while perfor- 46

mance can be compared across methods within the same filter, it 47

does not directly translate between different filters, due to each 48

filter imposing different matching conditions on the scene. The 49

range of each independent variable was also selected arbitrar- 50

ily for each chart, and the area under the DDI curve represents 51

the extent to which a method has achieved good performance in 52

the entirety of that range. The intent of the chart is to highlight 53

cases where a method might perform better or worse relative to 54

the other tested methods. 55

The chart shows that the QUICCI and RICI descriptors are 56

clearly superior for cluttered environments. The performance 57

of the RoPS, SHOT, and USC descriptors in cluttered scenes 58

are not missing in this plot. The area described by their DDI 59

curves is small. QUICCI and RICI also perform well in oc- 60

cluded scenes –along with the Spin Image– but exhibit compar- 61

atively weak performance when confronted with various types 62

of noise, where the Spin Image, SHOT, and USC descriptors 63

excel. The only exception is deviations in the normal vector, to 64

which the Spin Image is sensitive. 65

5.2. Dual filter experiments 66

The dual filter experiments use a pipeline with two filters 67

each, and are thus capturing the effects of two independent vari- 68

ables. To visualise these, a 2D heatmap is used, which counts 69
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(c) Spin Image
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(f) USC
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Fig. 9: Results for the alternate triangulation filter. Figure 9g shows the number of sample points per histogram bin.
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Fig. 10: Results for the deviated normal vector filter. The horizontal axis represents the angle by which the normal vector of the scene point was rotated. Figure 10g
shows the number of sample points per histogram bin.

the fraction of samples whose DDI is 0. If a bin has less than 51

samples, it is removed. Removed bins show a background grid2

instead of a heatmap pixel.3

The first of the tested dual filter pipelines is the clutter filter4

followed by the occlusion filter, which is a common occurrence5

in physical environments. The results of this experiment are6

shown in Figure 15. We observe here that higher levels of clut-7

ter have a self-occluding effect, limiting the observed level of8

clutter in the final scene mesh.9

For the configurations for which data is available, the USC,10

RoPS, and SHOT descriptors show a poor capability of han-11

dling any combination of occlusion and clutter. RICI appears12

to perform best.13

The final two configurations combine a clutter and occlusion14

filter, with a Gaussian noise filter, respectively. The results for15

the pipeline containing the clutter filter are shown in Figure 16,16

and the results for the pipeline containing the occlusion filter in17

Figure 17.18

For the pipeline with the clutter filter, RICI shows the highest19

performance across the tested methods, and maintains much of20

this performance when higher intensities of Gaussian noise are21

applied. In the case of the pipeline with the occlusion filter, the22

Spin Image performs best out of of the tested descriptors.23

6. Conclusion24

The ShapeBench benchmark has been proposed, along with25

the novel DDI metric as an extension to the popular AUCpr met-26

ric. The DDI metric was shown to be more informative than27

solely using the area under precision-recall curves, while si-28

multaneously being insensitive to multiple occurrences. The29

combination of the AUCpr and DDI yield an improved insight30

in the expected performance of a local 3D shape descriptor than31

each does individually.32

The benchmark was used to test a range of descriptor meth-33

ods, demonstrating their strengths and weaknesses under vari-34

ous conditions. The replicability of the produced results, and35

the public availability of the source code may both assist in36

gaining a deeper understanding of previous work, as well as 37

the development and evaluation of new descriptor methods in 38

the future. 39

Our results show that the number of models and point sam- 40

ples used in the evaluations of previous work may not have 41

achieved a precision adequate to compare methods. 42

6.1. Future Work 43

While the presented benchmark includes a strategy for au- 44

tomatic selection of support radii, it is not necessarily opti- 45

mal. Human environments contain many shapes at varying 46

scales. For instance, a building viewed from the outside may 47

be roughly shaped as a cuboid, while on the inside contains 48

smaller shapes such as chairs and tables. It is possible to think 49

of a support radius as an indication of the expected scale of 50

shapes within, and algorithms estimating such scale should be 51

investigated. It may even prove necessary to create multiple 52

descriptors per keypoint. 53

The benchmark has also not investigated the effect of differ- 54

ent distance functions on the matching performance of different 55

descriptors. 56
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Fig. 11: Results for the support radius deviation filter. Figure 11g shows the number of sample points per histogram bin.
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Fig. 12: Results the Gaussian noise filter. Figure 12g shows the number of sample points per histogram bin.
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Fig. 13: Results the alternate mesh resolution filter. Figure 13g shows the number of sample points per histogram bin.
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Fig. 15: Results for the clutter filter followed by the occlusion filter.
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Fig. 17: Results for the occlusion filter followed by the Gaussian noise filter.
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(a) Original (b) Filtered

Fig. 19: Example output of the occlusion filter.

(a) Original (b) Filtered

Fig. 20: Example output of the alternate triangulation filter.

(a) Original (b) Filtered

Fig. 21: Example output of the normal vector deviation filter.

(a) Original (b) Filtered

Fig. 22: Example output of the support radius deviation filter.

(a) Original (b) Filtered

Fig. 23: Example output of the Gaussian noise filter.

(a) Original (b) Filtered

Fig. 24: Example output of the alternate mesh resolution filter.

(a) Original (b) Filtered

Fig. 25: Example output of the clutter filter followed by the occlusion filter.

(a) Original (b) Filtered

Fig. 26: Example output of the clutter filter followed by the Gaussian noise
filter.

(a) Original (b) Filtered

Fig. 27: Example output of the occlusion filter followed by the Gaussian noise
filter.
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