
Computers & Graphics (2024)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

ShapeBench: a new approach to benchmarking local 3D shape descriptors

Bart Iver van Blokland1,

A R T I C L E I N F O

Article history:
Received July 22, 2024

Keywords: 3D Local Shape Descriptors,
ShapeBench, Benchmark

A B S T R A C T

The ShapeBench evaluation methodology is proposed as an extension to the popular
Area Under Precision-Recall Curve (PRC/AUC) for measuring the matching perfor-
mance of local 3D shape descriptors. It is observed that the PRC inadequately accounts
for other similar surfaces in the same or different objects when determining whether a
candidate match is a true positive. The novel Descriptor Distance Index (DDI) metric is
introduced to address this limitation. In contrast to previous evaluation methodologies,
which identify entire objects in a given scene, the DDI metric measures descriptor per-
formance by analysing point-to-point distances. The ShapeBench methodology is also
more scalable than previous approaches, by using procedural generation. The bench-
mark is used to evaluate both old and new descriptors. The results produced by the
implementation of the benchmark are fully replicable, and are made publicly available.

© 2024 Elsevier B.V. All rights reserved.

1. Motivation

The ability to compare the similarity of 3D surfaces is cru-
cial in a number of applications, such as 3D registration [1], bin
picking [2], Simultaneous Localisation and Mapping (SLAM)
[3] and 3D object retrieval [4]. A wide variety of methods
have been proposed, both in the form of traditional algorithms
[5, 6] and, more recently, learned features [7, 8]. Evaluating the
performance of 3D surface matching methods provides under-
standing of their strengths and weaknesses, and is thus crucial
for determining their practical applicability.

This paper focuses on improving the Precision Recall Curve
(PRC)—the most popular methodology for evaluating local 3D
shape descriptor methods—along with its associated Area Un-
der Curve (AUCpr) metric [9, 10, 11]. However, its application
domain extends to any surface point matching algorithm. The
AUCpr metric measures the extent to which a particular method
can correctly identify models in a set of scenes. The set of mod-
els M contains known objects. Subsets of models are placed in
different arrangements, and exposed to various adverse condi-
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tions, to construct the set of scenes S . A detailed description of
how the PRC and AUCpr are calculated is given in Section 2.1.

We observe several issues with the PRC methodology, and
how it is used to evaluate local descriptor methods in previous
work. Most pertinently, the PRC methodology assumes that
each surface point in a scene has at most one matching sur-
face point on exactly one specific model. This does not ade-
quately account for the possibility of multiple matches to exist,
which can be caused by the presence of self-similarity within a
model, or different models containing partially similar geome-
try. The methodology can therefore count true positives as false
positives. An example of an object commonly used in previ-
ous evaluations exhibiting self-similarity is shown in Figure 1.
Computing a ground truth of all surface matches is computa-
tionally intractable.

The ShapeBench methodology is proposed to address this,
which—in contrast to previous work—measures the matching
performance of a local 3D shape descriptor by comparing dis-
tances between individual descriptor pairs. The descriptors are
computed for corresponding points on a model, and a modified
version of the same model that constitutes the scene. Using this
approach avoids the need to compute all ground truth matches,
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Fig. 1: All surfaces that are similar to the indicated point in the Ar-
madillo model from the Stanford 3D scanning repository according to
the RICI descriptor. A darker red colour indicates a better match.

as the same point on two variants of the same surface is always a
known match. The novel Descriptor Distance Index (DDI) met-
ric is also proposed as a means to contextualise the computed
distances between descriptor pairs, by quantifying the degree
to which one descriptor can distinguish its counterpart from
noise. The DDI is intended to be used in conjunction with the
PRC, and can assist in explaining observed performance by the
PRC, and visualise how performance degrades when a method
misidentifies a nearest neighbour point.

Another motivation for comparing a model against a modi-
fied counterpart is that it improves the scalability of the eval-
uation methodology. Previous work has commonly relied on
datasets of captured 3D data. The results presented in this arti-
cle show that the quantity and variety of objects in these datasets
is likely insufficient. Table 1 contains an overview over various
recently proposed methods, along with all datasets used to eval-
uate them. These datasets contain at most 8 different models,
and several also share the same model set.

The issue of quantity can in theory be rectified by using
larger, more varied, datasets. However, datasets consisting of
real world 3D scans scale poorly. Each scene must be con-
structed, captured, and stored separately. Multiple datasets
available today containing only single objects require more than
a terabyte to store, such as the ABC and Objaverse datasets
listed in Table 1. An associated set of scenes would require a
multiple of that. The proposed ShapeBench methodology there-
fore constructs scenes in a procedural and replicable manner,
only requiring a set of models as input. Scenes are generated
using a sequence of one or more filters, each simulating real
world adverse conditions.

The use of artificial data has the added benefit that the ef-
fect of different adverse matching conditions can be studied in
isolation. Real data often inherently contains combinations of
these. One downside of artificial data is that multiple effects
that naturally occur in real scans must now be approximated or
simulated through one or more filters instead.

2. Related work

An overview is provided over different metrics and evalua-
tion methodologies that have been used in previous work, with

a special focus on the PRC methodology. A brief description
is also given of the methods that were used to test the proposed
ShapeBench benchmark in Section 5.

2.1. The PRC methodology

An overview over the procedure for computing the PRC and
the associated AUC metric is given here. Because implementa-
tion details of the PRC vary, the version described by Guo et al.
[5] is used as a reference.

For computing the PRC, a set of points PS ⊆ S is randomly
sampled from the surface of the scene S , which may be done us-
ing a keypoint detector. Using known ground truth transforma-
tions, another set PM = {T (q) : q ∈ PS is constructed of model
surface points that correspond to those in PS , where T (q) is the
ground truth transformation that transforms the point q into the
coordinate space of the model it belongs to.

After computing a feature vector for each point in PS and PM

using the method being tested, the closest two points in feature
space pm1 and pm2 are found in PM for each point ps in PS .
Using these, the nearest neighbour distance ratio, σ, is defined
in Equation 1, where f (p) denotes a feature vector for a given
point p, and d( f1, f2) a function computing the distance between
two feature vectors.

σ =
d( f (ps), f (pm1))
d( f (ps), f (pm2))

(1)

If the value of σ is below a threshold τ, the point pair ps

and pm1 is considered a match. For the point to be counted as
a true match, two conditions must also be satisfied. Condition
1 requires that both points correspond to the same object, and
condition 2 that the Euclidean distance between T (ps) and pm1
is less than half of the support radius. The support radius of a
local shape descriptor is a parameter that determines the size of
the support volume, usually a sphere or cylinder. All surfaces
within this volume are represented by the descriptor. If either of
these conditions is not satisfied, the pair is instead considered a
false positive.

The PRC is computed by first computing the values of σ,
and the two criteria, for each corresponding point pair in PS

and PM . Varying the value of τ between 0 and 1, and comput-
ing the Precision and Recall for each point ps, yields the PRC
curve. Precision and Recall are defined in equations 2 and 3,
respectively. The area below this curve constitutes the derived
Area Under Curve (AUCpr) metric.

Precision =
|true matches|

|true matches| + |false positives|
(2)

Recall =
|true matches|

|corresponding ground truth points|
(3)

The distance threshold τ was initially proposed by Lowe [26]
for determining whether a database of keypoints contained a
good match for a given query. Distinctive descriptors tend to
only have a single good nearest neighbour, causing the σ ratio
to be low. The threshold was later adopted for evaluating 3D
descriptors [27, 28].
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Dataset Information Used in Evaluation
Dataset Model Set Models Scenes [10] [12] [9] [13] [14] [11]
Bologna 3D Retrieval (B3R) [15] Stanford 6 18 Yes - Yes Yes Yes Yes
Random Views [15] Stanford 6 36 - - Yes - - -
Bologna Dataset 1&2 - Stanford [16] Stanford 6 45 - Yes Yes - - -
UWA 3D Modelling UWA 4 75 Yes - - Yes1 Yes -
UWA Object Retrieval [17, 18] UWA 5 50 Yes Yes - Yes Yes Yes
Bologna Dataset 3 - SpaceTime Stereo [16] Kinect (+ clutter) 8 15 - - Yes - - Yes
Bologna Dataset 5 - Kinect [19] Kinect (+ clutter) 6 16 Yes - Yes1 - - -
Bologna Object Recognition Kinect (+ clutter) 6 17 - Yes - - - -
Bologna Mesh Registration Kinect 6 95 Yes - - Yes - -
Queens LiDAR [20] Queens 5 63 - Yes - - - -
7-scenes [21] 7-scenes 7 n/a - - Yes - - -
DTU [22] DTU 45 3,204 - - - - - -
ShapeNetCore [23] ShapeNetCore 51,300 n/a - - - - - -
ABC [24] ABC 1,000,000 n/a - - - - - -
Objaverse [25] Objaverse 798,759 n/a - - - - - -

Table 1: An overview over datasets used for the evaluations in a number of recent papers, as well as some examples of larger datasets. Datasets that were not used
in a particular evaluation are marked with a hyphen (-) for visual clarity. All datasets with equivalent model set names use the same (sub)set of models.

2.2. Evaluation methodologies

While only the PRC methodology has been discussed in de-
tail, it is not the only one which has been used for evaluating
descriptors to date. We therefore highlight some other notable
metrics here.

A classic metric is the Receiver Operating Characteristics
(ROC), developed during the second world war to evaluate the
performance of radar operators. This metric plots the true pos-
itive rate against the false positive rate, where the true positive
rate is equivalent to the recall metric in Equation 3. While not
a common occurrence, the metric has seen use in the form of a
confusion matrix [29, 30, 17]. The area under the ROC curve
can be used as an aggregate metric for the overall performance
of a tested method [31], in a similar fashion to the PRC..

Another metric that has been used is the Cumulative Match
Characteristic (CMC) [7, 32], which uses a fixed number of
query descriptors and their corresponding lists of nearest neigh-
bours in feature space to compute the fraction where the ground
truth nearest neighbour is in the top n nearest neighbours. The
fraction is subsequently plotted for varying values of n. Van
Blokland et al. use a variation of this metric [33, 34], comput-
ing the CMC solely for n = 0, and plotting the variation of its
value across a number of scenes.

Whereas the PRC approach uses the area underneath the
precision-recall curve to compute an overall performance met-
ric, Buch et al. instead used the maximum F1 score [35], de-
fined as the maximum harmonic mean across all the computed
precision-recall values.

2.3. Local 3D Shape Descriptors

3D descriptors are commonly classified into global and local
descriptors. Global descriptors aim to represent an entire model

1The information provided in the paper was insufficient to accurately deduce
which exact dataset was used. A best guess has been used instead.

in a single descriptor. This has a clear space advantage over lo-
cal descriptors, which use many descriptors to represent smaller
portions of an object. However, local descriptors tend to be less
sensitive to challenging matching conditions such as occlusion
[36]. They also rely on an object being segmented from the en-
vironment. Examples include the SSCD [37] and PANORAMA
[38] descriptors. Local descriptors are often combined with
keypoint detectors to first locate distinct points of interest in
a scene in order to reduce the volume of descriptors that need
to be computed and compared.

One of the earlier local 3D shape descriptors is the Spin Im-
age [39], proposed by Johnson and Hebert. The descriptor is a
histogram that computes the distribution of points in the cylin-
drical coordinate space described by a given keypoint and its
associated normal vector. Tombari et al. proposed the Unique
Shape Context (USC) [16], which uses a spherical support vol-
ume subdivided into partitions along the azimuth, elevation, and
radial directions. A histogram is subsequently computed over
the surface points in the support volume that fall into each bin,
scaled by the local density of each point. The method is an ex-
tension to the 3D Shape Context [40], and addresses its primary
limitation by using a local reference frame to orient the support
volume of the descriptor in a repeatable manner.

The Signature of Histograms of OrienTations (SHOT) [19]
proposed by Salti et al. uses the same local reference frame and
spatial subdivision of its support volume as the USC descriptor.
In contrast to USC, SHOT accumulates histograms of cosines
for each spatial bin. These cosines are computed between the
normal vectors of surface points and the orientation of the de-
scriptor.

The Rotational Projection Statistics (RoPS) descriptor pro-
posed by Guo et al. [41] also uses a local reference frame to
orient the points present in the support volume. These points
are subsequently rotated in several increments along each ma-
jor axis. For each rotated point cloud, all points are projected on
the xy, yz, and xz planes, and a histogram is computed over their
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distribution. Various statistics are computed and concatenated
to form the RoPS descriptor.

The Radial Intersection Count Image (RICI) descriptor pro-
posed by van Blokland and Theoharis [33] is a histogram util-
ising variations in the number of intersections between circles
and the object surface. The same authors noticed that inter-
section counts do not vary between most adjacent circles, and
therefore proposed a more compact binary version of the de-
scriptor, called the Quick Intersection Count Change Image
(QUICCI) [34].

Other relevant examples of local 3D shape descriptors in-
clude the Fast Point Feature Histogram (FPFH) [42], and Co-
SPAIR [43].

3. The ShapeBench benchmark

The proposed ShapeBench evaluation methodology is now
presented. Its objective is to evaluate whether a descriptor is ca-
pable of correctly determining similarity in surface point pairs,
and to what extent this capability is maintained when presented
with various adverse conditions that are common in practical
applications. In order to achieve this, it is necessary to estab-
lish ground truth matches between surface points and their sur-
rounding surface patches. While metrics exist for determining
the similarity of such patches, exhaustively detecting all match-
ing point pairs in a large dataset is intractable.

The benchmark is therefore built around comparing point
pairs on surfaces that are guaranteed to be a correct match: two
copies of the exact same surface. One of these two copies is
left unmodified and represents the model, while one or more
alterations are applied to the other copy to create a scene ob-
ject. These alterations are applied as a sequence of one or more
filters, where the output of one filter is used as the input for
the next. Filters have fixed parameters, and are agnostic to any
other filters applied on the sample object. After the scene mesh
is computed, the effect on the matching capability of the de-
scriptor can be measured by the distance between the descrip-
tor pairs computed for corresponding points on the model and
scene objects.

An overview over the benchmarking procedure is shown in
Figure 2. A set of model objects is first drawn at random from
a large dataset. For each of these models, 100 vertices are ran-
domly selected from the object. The corresponding points on
the scene mesh are located after the filter sequence has com-
pleted. Note that this may cause some points to be lost if the
portion of the surface they were located on is removed by a fil-
ter. Each filter aims to simulate a real world phenomenon such
as clutter (surfaces in the support volume that are not part of the
model) and occlusion (portions of the object surface are miss-
ing due to these not being visible from the point of view of a
3D capturing device).

A descriptor pair is computed for each of the remaining point
pairs, each respectively capturing corresponding points on the
surface of the model and scene. This results in a model de-
scriptor Dm, and a scene descriptor Ds that has undergone some
modification. This descriptor pair is finally used to compute the
Descriptor Distance Index and PRC/AUC metrics.

Each filter reports the value of the independent variable it
simulates. This value may either be selected at random, or must
be computed after the filter has completed. For example, a filter
altering the orientation of normal vectors will report the rotation
angle it randomly selected. A filter removing occluded surfaces
can only compute the amount of area that was removed after it
has been applied. The ability to vary such an independent vari-
able comes from running the experiment many times on many
different object pairs, increasing the likelihood that the variable
happens to have a given value of interest. It is also worth noting
that all independent variables must be computed on a point by
point basis, rather than for the entire object. Figure 3 demon-
strates why these values are location dependent.

3.1. The Descriptor Distance Index

The PRC was shown to be affected by the existence of mul-
tiple valid matches for the same surface. Accurately determin-
ing all these is computationally intractable. The nearest to sec-
ond neighbour distance ratio σ is also affected by this issue, as
two valid matches are likely to result in a high distance ratio.
A secondary metric that is used in conjunction with the PRC,
and avoids relying on measures that are susceptible to multiple
similarity is therefore desirable. The Descriptor Distance Index
(DDI) metric is therefore proposed.

In contrast to the PRC, the DDI aims to compare distances
between corresponding model and scene point pairs directly.
Unfortunately, this is not possible directly, as the computed dis-
tance values vary across descriptors and distance functions. An
additional function is therefore needed to translate descriptor
distances into a space that allows comparison.

Normalising all distances is not possible, as distance func-
tions do not necessarily scale linearly. Using the same distance
function for all methods risks disadvantaging some methods if
another distance function would yield better performance. It
is, however, possible to compare distances between a descriptor
and other descriptors when using the same descriptor method
and distance function.

The Descriptor Distance Index (DDI) thus relies on a large
set of descriptors computed for random vertices sampled from
randomly chosen objects from the dataset, called the reference
set R. The DDI for a given pair of descriptors f1, f2 is defined
as the cardinality of the set of descriptors from R that are closer
in feature space to f1 than f2. The metric therefore effectively
measures the extent to which f2, from the perspective of f1, is
indistinguishable from noise. In our experiments, the size of the
reference set was set to 1 000 000 descriptors.

The process for creating the reference set uses the same ran-
dom seed for all of the tested methods. Each method is therefore
asked to compute a descriptor for the exact same points from the
exact same dataset objects, which ensures that all methods are
tested on equal ground, and allows comparison of DDI values
across methods. The metric is also not sensitive to the existence
of multiple similar surfaces, as equivalent local surfaces should
produce equivalent descriptors, and only descriptors whose dis-
tance value is lower are counted. If f2 is computed over the
same surface used to compute f1 but has been altered in some
way, the purpose of the metric still holds because f2 is now ob-
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Reference descriptor set R

Model object Scene

...? ?

Mesh �lter(s)
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|| S ||
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10,000 objects
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1 descriptor per 
sample point

...
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100 random vertices

Filter dependent transformation
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Fig. 2: An overview over the proposed benchmark.

Object of interest
Point A

Point B

Clutter object

Fig. 3: A demonstration of a situation where a descriptor nuisance is
localised to a portion on the object. Two descriptors are computed for
two points and their support regions are shown. The support region of
point A only contains the object of interest, while point B also contains
clutter.

jectively less distinguishable from noise from the perspective of
f1.

3.2. Dataset

An appropriate dataset must be selected to serve as a model
set and input to the matching conditions being tested by the
filter sequence. The dataset should contain a wide variety of 3D
data that is representative of the various use cases in which the
tested methods may be applied.

The Objaverse dataset [25] was selected, which covers many
domains such as household objects, furniture and vehicles. The
dataset contains a total of 798,759 files from which 8,124 were
excluded due to containing a point cloud or, in a few cases,
for failing to parse. Point clouds were excluded because sam-
pling triangle meshes into point clouds yields more similar sur-
faces across the two modalities compared to sampling point
clouds into triangle meshes. The ABC dataset and ShapeNet-
Core datasets were also considered, but both mostly consist of
CAD drawings with limited variety or application domains.

A derived version of the dataset was created to simplify dis-
tribution. This version only contains vertex positions, normals
and, for 3D meshes, the polygon definitions for each object.
The compression format is lossless and reduced the total size

of the dataset from approximately 8.1 TB to approximately 1.5
TB.

3.3. Parameters

There are various parameters that must be selected in order to
be able to compare matching performance in a manner that does
not benefit specific methods. This includes the support radius,
scale, and sample count used for sampling point clouds.

One downside of using artificial data is that there is no in-
formation available regarding the physical dimensions of each
model. One option is to use the mesh resolution as an indica-
tion of scale, however this approach does not yield satisfactory
scales for objects with a high variance in edge lengths. Ob-
jects are instead fitted into a unit sphere, which also aids the
interpretation of any relevant distances in any produced results.
This was achieved using the seb algorithm [44], and its publicly
available implementation [45].

All local shape descriptors use a support volume surrounding
the reference point to determine which surfaces to represent. A
larger volume captures more surface information, but also has
a greater risk of including clutter. Smaller volumes risk a re-
duction in descriptive capability. To date there is no commonly
accepted or established approach to determining the support ra-
dius, and it is usually left up to the user to select.

From the perspective of fairness, a support radius determines
how much surface information is given to the descriptor. It is
inherently impossible to control the amount of information pro-
vided to each descriptor, as there exists variation in the shapes
of the support volumes across methods. The strengths and
weaknesses inherent to each method can affect how well a par-
ticular method performs in a benchmark. We thus conclude
that a radius must be chosen on a per-method basis, and aim
to choose the radius that maximises the method’s capability to
discriminate other non-matching descriptors.

The means by which this is achieved is to generate two sets
of 100 000 descriptors for each support radius between 0.01 and
1.5 (recall that all objects are fitted into a unit sphere), with in-
crements of 0.015. For each pair of sets, the average distance
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Fig. 4: An overview over the lowest, mean, and highest distances observed across all 1010 descriptor pairs (all possible pairs from two sets of 100 000 descriptors
each) for each support radius that was tested. The chosen support radius is indicated with a vertical line on each chart.

between all possible descriptor pairs in each set is computed. It
is conjectured that the support radius that maximises this aver-
age distance would imply that the descriptor is on average opti-
mally capable to discriminate its descriptors. This fixed support
radius is subsequently used for all descriptors computed for that
method. The set of models used for computing the support ra-
dius is different from the one used for selecting the set of models
and reference descriptors.

A slightly modified version of the support radius selection
procedure was used for the USC descriptor. The mechanism
used by this descriptor to normalise bin contributions is not ef-
fective, and caused the average distances between descriptor
pairs to decrease for higher support radii. The addition of a nor-
malisation step corrected this problem. This step is only used
during the support radius selection process.

Another relevant parameter is the number of point samples
used to uniformly sample the triangle meshes from the dataset
into point clouds. This step is needed when testing methods us-
ing these as input. The disparity between input modalities rep-
resents to some extent a source of unfairness between methods
that use one or the other. A low resolution point cloud contains
less information than the triangle mesh it was sampled from,
while a high resolution greatly increases execution time.

Using the number of vertices or triangles, or mesh resolution
of a mesh to set the sample count is not a good solution be-
cause the sizes of triangles can vary significantly, even within
certain meshes. We therefore use a sample count of 1 000 000
per unit area. The area is calculated after fitting the object into
a unit sphere. This ensures that all surfaces are sampled with a
roughly equivalent resolution. To alleviate some of the effects
of sampling noise and excessive computation time, a lower and
upper bound of 1 000 000 and 5 000 000 points are used, respec-
tively.

4. Filters

Each of the filters used for simulating various adverse match-
ing conditions are now motivated and described in detail.

4.1. Clutter

This filter simulates the effects of clutter being present in the
vicinity of the model, adding surfaces to the support volumes
of tested descriptors that do not belong to the model itself. The
intensity of clutter is measured using Equation 4.

Clutter =
Non model area in support volume

Model area in support volume
(4)

The filter has been implemented by first sampling 10 clut-
ter objects at random from the dataset. These added objects
are subsequently simulated using the Jolt Physics library [46],
which ensures objects adhere to physical constraints such as
colliding with other objects and gravity. Objects are initially
placed in a vertical stack in the air, after which gravity is ap-
plied and the objects fall on to a ground plane. The simulation
ends when no more movement is detected. Clutter objects are
attracted to the sample object to increase the likelihood that the
objects form a pile.

One limitation of the Jolt Physics library is that it does not
support the simulation of groups of arbitrary mesh surfaces.
The V-HACD algorithm by Mammou et al. [47] was therefore
used, through its publicly available implementation [48], to first
subdivide each mesh into a set of convex hulls that approximate
the original surface. These are used as a proxy during the sim-
ulation. This, in rare cases, yields degenerate hulls, which are
removed.

4.2. Occlusion

Occlusion is the result of surfaces not being visible from the
point of view of a capture device, sometimes also referred to
as partiality. This filter renders a high resolution image of the
input scene from a random viewing direction, and removes any
triangles that are not visible in the image. The intensity of the
occlusion filter is given in Equation 5.

Occlusion = 1 −
Model area in scene in support volume

Model area in support volume
(5)

4.3. Alternate mesh resolution

When an object is acquired using different acquisition meth-
ods, such as different 3D capture devices, the resolution of the
produced mesh can vary due to variations in settings and hard-
ware limitations. Testing variations in mesh resolution is a com-
mon occurrence in descriptor evaluations done to date. The
prevalent way in which this is implemented in previous work
is through the use of a decimation algorithm. The specific al-
gorithms that are usually used for this purpose rely primarily
on edge and half-edge collapse, along with a greedy scheme for
deciding which edge to collapse next.
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(a) (b)

Fig. 5: Two pictures of the same object surface where the original mesh in a has
been captured by a simulated 3D capture device in b

While this achieves the desired effect of reducing mesh reso-
lution, similar decimation rates can have an inconsistent effect
on the mesh itself. A mesh consisting mostly of flat surfaces
will see little physical change after reducing it to a low vertex
count, while the same reduction applied to mesh with more or-
ganic shapes will be far more pronounced.

Another drawback of using decimation is that such algo-
rithms often do not produce any of the sampling artefacts com-
monly found when using low quality capturing equipment. An
example of this is shown in Figure 5, where the edge is rep-
resented unevenly due to sampling artefacts. A decimation al-
gorithm would not be inclined to produce such meshes, as it
attempts to maintain the shape of the mesh, and is more prone
to simplify such ridges to sharp edges. Additionally, a low res-
olution scanner may be able to pick up smaller details, which a
decimation algorithm is not guaranteed to keep. We therefore
do not consider decimation to be a good resolution reduction
strategy that is grounded in real world phenomena.

One potential solution that could be used instead is a remesh-
ing algorithm, which attempts to recreate a mesh using approx-
imately equilateral triangles with a given edge length. By using
a target edge length that is larger than the average edge length of
the original mesh, the resulting mesh should have fewer trian-
gles than the original while approximating the original surface.
However, this approach proved infeasible because a proper tar-
get edge length is difficult to establish. Specifying the target
edge length either as a constant or using the average edge length
of the input mesh risks creating an excessive number of trian-
gles. This in turn causes high computation times and memory
requirements in different implementations of remeshing algo-
rithms that are currently available.

The adopted solution for this filter instead attempts to simu-
late an ideal low resolution scanner, by rendering the scene from
a random point of view at a resolution of 640×480 pixels. The
depth buffer is subsequently used to reconstruct the mesh. Vari-
ation in the mesh resolution is achieved by varying the distance
of the object to the virtual depth camera. Due to the perspective
projection, the object will on average cover fewer pixels in the
depth buffer, thus being reconstructed using fewer triangles.

4.4. Alternate triangulation
When the same object is captured repeatedly, the produced

mesh surface should be similar in shape when assuming the cap-
ture quality was reasonable. However, the manner in which the
surface is triangulated is unlikely to be similar due to various
sources of noise during the reconstruction process. An example

of this is shown in Figure 6. If a method should thus be able to
recognise an equivalent surface, it must be capable of doing so
irrespective of how that surface is represented.

Furthermore, even if a keypoint detector is able to locate the
same keypoint in both mesh variants, the exact location of each
keypoint relative to the original surface may have shifted.

Fig. 6: Two different 3D captures of the same object. The surfaces being rep-
resented are the same, but the positions of vertices and triangles is different
between them.

Remeshing is a good candidate for implementing a similar
effect to the alternate mesh resolution filter. However, as stated
in Section 4.3, current remeshing algorithms were not found to
be viable. We instead used a mesh smoothing algorithm pro-
posed by Surazhsky and Gotsman [49], and its implementation
from the CGAL library [50]. The algorithm adjusts vertex po-
sitions to form higher quality triangles (e.g. more equilateral in
shape, and similar in area), while maintaining the overall shape
of the mesh. The result is a similar mesh with displaced ver-
tices, which is in line with the objective of this filter. The in-
tensity of the effect of this filter is measured by computing the
distance to nearest vertex on the filtered mesh for each point on
the model surface.

4.5. Deviated normal vector

Many methods for estimating normal vectors have been pro-
posed to date. However, factors such as noisy input data and
estimation errors can propagate to deviations in the computed
normal vectors. Understanding how these deviations affect the
matching performance of a method is therefore relevant. This
filter adjusts all normals of the input model by computing a new
normal vector that deviates from the original by a uniformly
sampled random angle. The selected angle is chosen to be be-
tween 0 and 30 degrees. The azimuth direction in which the
normal is rotated is also chosen randomly.

4.6. Deviated support radius

Calibration or estimation errors in 3D capturing equipment
can cause the scale of a produced mesh to vary slightly across
repeated captures. Alternatively, if the support radius for a point
is selected using an algorithm on a per point basis, errors in the
radius estimation may cause a similar effect.

The filter scales the support radius by a randomly chosen fac-
tor s between 0.75 and 1.25. For the ease of implementation,
this is done by scaling the mesh by a factor of 2 − s, which
achieves the same effect.
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4.7. Gaussian noise

Noise is a common occurrence in captured 3D data due to
various sources of inaccuracies during the capturing process.
Each vertex with a unique vertex position is displaced by a dis-
tance sampled from a normal distribution. The displacement
direction is chosen by computing the average direction of the
normal vectors of all vertices sharing the same vertex posi-
tion. The same standard deviation is used for all vertices in
the object, whose value is selected randomly between 0.0001
and 0.01. These were chosen to be reasonable perturbations for
what can be expected of scans of varying quality.

5. Results

The proposed evaluation methodology is used to evaluate the
QUICCI, RICI, USC, Spin Image, SHOT, and RoPS descrip-
tors. These were chosen to be a representative set of both pop-
ular classic descriptors, while also including some that have
been proposed more recently. The used support radius, distance
functions, and other method specific parameters are listed in
Table 2. The AUCpr was computed using the set of all model
descriptors, in accordance with its implementation in previous
work.

The USC method should be noted specifically here. The in-
put point clouds for this particular method were downsampled
to 1% of the number of points used for other point cloud based
methods. The descriptor requires the computation of a point
density value for each point in the point cloud, which is an O(n2)
operation. This was done because computing descriptors at the
full point cloud resolution proved intractable. The results in
this section for this method show that this has likely influenced
the matching performance of this method, as it is not consis-
tently able to identify identical geometry. We consider the re-
sults for this method valid despite this problem, because using
this method in a practical context would likely be done using
a downsampled point cloud anyway. However, it is likely that
the matching performance for the full resolution point clouds
would be higher.

The benchmark is run for a total of 10 filter configurations,
one for each of the 7 presented filters where that filter is run by
itself, and three combinations of two filters. The same root ran-
dom seed is used for all of these configurations, which means
that the reference set R, the set of sample objects, and the sur-
face points sampled from those objects are all identical across
all iterations of the benchmark process.

Each experiment produces 1 000 000 data points, although
depending on the filter(s) that are applied, a portion of these
may be lost. For example, the occlusion filter removes any
vertices that are not visible from the perspective of the cam-
era. A plot with the distribution of sample counts is therefore
given alongside the observed matching performance for each
filter configuration.

The benchmark itself was implemented in C++, using the de-
scriptor implementations from the libShapeDescriptor library
[52]. While the library contains GPU implementations for a
number of the used descriptors, we found that using the CPU
variants was more effective for the purposes of this benchmark,

as the quantity of descriptors being computed at a time was not
sufficient to saturate the stream processors of the GPU with
work, making that path slower than using the CPU. However,
our implementation of the benchmark does support descriptors
implemented as GPU kernels.

5.1. Single filter experiments
The charts in this section measure the effect of a single filter

(and as such a single independent variable). Each chart con-
tains a visualisation of the distribution of DDI values, as well
as a curve showing the computed AUCpr for the same set of re-
sults. Values of the DDI can vary between 0 and the size of the
reference descriptor set, which has been set to 1 000 000. The
charts are constructed by first dividing the range of the x-axis
into 75 subdivisions. For all sample points whose x-coordinates
fall in each of these subdivisions, the share of DDI values that
falls into each order of magnitude is computed. The number of
samples in each order of magnitude is subsequently normalised
to the total number of point samples in that subdivision, which
yields the proportional DDI value. The AUCpr value computed
for each subdivision is plotted alongside these.

A higher proportion of low DDI values is desirable. Ideally,
all DDI values are zero, which would result in their relative
proportion being 1 for each subdivision. An example where
this is almost the case can be seen in Figure 10d. A DDI value
of 0 indicates that the method uniquely identified the correct
model descriptor out of all descriptors in the reference set.

The higher ranges of DDI values visualise how quickly
matching performance deteriorates, which provides more con-
text than a single curve. An example of this can be seen in Fig-
ure 11a and 11b, where only plotting the proportion of samples
that have a DDI of 0 would have shown both methods to be ap-
proximately equivalent in performance, while the proportional
DDI shows a more rapid decline in performance in the case of
the RICI descriptor. This is shown as a larger proportion of
higher DDI values.

The plots in this section indicate that values of AUCpr and the
fraction of results whose DDI value was measured to be 0 are
often similar. There are some exceptions, such as Figures 8a,
8b, and 12c. Limited testing indicates that these discrepancies
are primarily caused by a poor σ ratio. However, excluding the
σ ratio still left a similar gap to those seen on other plots. It may
be possible to explain this discrepancy by the existence of mul-
tiple viable matches. Its impact thus appears to be measurable,
but limited.

5.1.1. Clutter
Figure 7 shows the results of the experiment where solely the

clutter filter is applied on the model object. The RICI descrip-
tor is shown to be highly resistant to the effects of clutter here.
while USC, SHOT, and RoPS show poor resistance. We conjec-
ture that RoPS is rather sensitive to clutter due to the histogram
step using a bounding box that covers all point samples present
in the support volume. When clutter is added, the dimensions
of this bounding box change, causing the histogram to lose cor-
respondence with its clutter free counterpart. RoPS and SHOT
both also include a normalisation step, which may be sensitive
to the presence of clutter.
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Method Support radius Method specific parameters Distance Function
QUICCI 0.39 Resolution: 31×32 Weighted Hamming [51]
RICI 0.255 Resolution: 32×32 Clutter resistant squared sum of differences [33]
RoPS 0.675 Point samples per unit area: 100 000 Euclidean distance

Point sample limit: 5 000 000
Spin Image 0.81 Resolution: 32×32, support angle As: 180° Pearson correlation
USC 0.135 Resolution: J = 10, K = 14, L = 14 Euclidean distance

rmin: 0.014, δ: 0.01, sampling density: 1%
SHOT 0.15 Resolution: s = 11, λ = 8, µ = 2, R = 2 Euclidean distance

Table 2: An overview over the tested methods and the relevant parameters used.

In the case of USC, despite the contributions of individual
points being normalised by the local point density when the
histogram is constructed, the effect of clutter is that the val-
ues of individual descriptor bins are increased. This in turn re-
sults in added distance to its nearest neighbour due to the use of
the Euclidean distance function. Clutter has a similar effect on
the Spin Image, but the use of the Pearson Correlation distance
function likely reduces some of the impact.

The sample counts in Figure 7g show how the distribution of
clutter varies across different support radii. The methods with
larger support radii experience larger amounts of clutter more
often, as would be expected.

5.1.2. Occlusion
The results for the experiment where only the occlusion fil-

ter was applied are shown in Figure 8. Here the Spin Image
performs best. The QUICCI and RICI descriptors demonstrate
a capability of correctly identifying the model descriptor when
portions of the object surface are missing. However, as dis-
cussed previously, this comes at the cost of lower σ ratios.
These may partially be explained in the case of the QUICCI
descriptor by a reduction in the number of set bits (to 1, specif-
ically) by the occlusion filter. The remaining set bits are more
likely to better overlap with more distant neighbours, which is
emphasised by the used weighted Hamming distance function.

The sample count distribution shows that the occurrence of
a partiality of 50% is common, despite the variation in support
radii amongst the tested methods. With respect to replicability,
there are small variations induced into the results, depending
on which OpenGL implementation is used. We have used the
one provided by Mesa 23.1.4. The same applies to the alternate
mesh resolution filter.

We compared our results for the clutter and occlusion filters
to those presented by Guo et al. [5] in Fig. 7g and 7h. Both Fig-
ures appear to exhibit high levels of noise, where most curves
fluctuate to varying degrees. In contrast, our quantitative re-
sults, computed over approximately two to three orders of mag-
nitude more sample points, indicate that these curves should in
most cases be monotonically decreasing with increasing levels
of clutter and occlusion. While the authors were not able to de-
termine one themselves, it appears that a random error is likely
present in the data.

For the USC descriptor, neither of the reported curves
matches with the conclusions of our evaluation. The Spin image
results for occlusion show some similarity, where most obser-

vations are within an estimated error margin of 0.2 AUCpr. The
reported occlusion results for RoPS are in line with our own
results.

5.1.3. Alternate triangulation
For the alternate triangulation filter, whose results are shown

in Figure 9, only weak correlation was observed between the
average edge length (mesh resolution), and the matching per-
formance of the different descriptors. Of the tested descriptors,
RoPS and SHOT exhibit similar matching performance, with
USC performing best. Our testing did not show a relationship
between the matching performance of a descriptor, and the ver-
tex count of the input mesh.

5.1.4. Deviated normal vector
The deviated normal vector filter randomly chooses the an-

gle by which the normal vector of the scene mesh point is per-
turbed. This yields an even distribution of point samples across
the different rotation angles. The QUICCI, RICI, SHOT, and
Spin Image descriptors use the normal vector of a keypoint to
orient their histograms, and are affected by perturbations to this
vector, as can be seen in Figure 10.

The QUICCI and RICI descriptors rely on the similarity of
rasterised local contours (e.g. the circular shape of a bicycle
wheel). A rotation of the normal vector would cause the po-
sition of these rasterised contours to shift within the descrip-
tor image. We conjecture that this is the cause of the drop in
matching performance when the normal vector deviation angle
is increased.

A similar effect occurs in the case of the Spin Image, which,
instead of intersection counts, estimates the mesh surface area
intersecting a histogram bin, when that bin is rotated around a
common axis for one rotation [53]. Its improved performance
over the QUICCI and RICI descriptors may be explained by that
changes in the area intersecting with each bin with increasing
normal vector deviation angles are more gradual than intersec-
tion counts.

The SHOT descriptor performs better at higher normal vec-
tor deviation angles than the QUICCI, RICI, and Spin Image de-
scriptors. We conjecture that this is caused by the comparatively
large volume described by each histogram bin. The SHOT de-
scriptor does not achieve perfect matching performance when
the normal vector is left intact. This can be explained by that
the filter also modifies the normals of all vertices in the scene.
The SHOT descriptor uses these to compute its histograms.
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(c) Spin Image
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(e) SHOT
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(f) USC
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Fig. 7: The effect of varying levels of clutter on the matching performance of various descriptors. Figure 7g shows the number of sample points per histogram bin.
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(f) USC
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Fig. 8: The effect of varying levels of occlusion on the matching performance of various descriptors. Figure 8g shows the number of sample points per histogram
bin.

The USC and RoPS descriptors do not utilise the informa-
tion of normal vectors, but their results have been included be-
cause it shows that RoPS achieves a near perfect matching score
when provided with effectively equivalent geometry. The same
is true for USC, although as mentioned previously, the low reso-
lution used for computing these descriptors appears to diminish
its matching capabilities.

5.1.5. Deviated support radius

The results of the support radius deviation filter in Figure
11 show that the different descriptors have varying sensitivity
levels for scale and/or support radius mismatches. The per-
formance of QUICCI and RICI can be explained with reasons
that are similar to those outlined for the deviated normal vec-
tor. The rasterisation done by these descriptors relies on inter-
section counts occurring at specific distances, and when these
are displaced by a change in scale, the observed matching per-
formance drops. QUICCI appears to be slightly more resistant
than RICI. The SHOT descriptor demonstrates excellent perfor-
mance in this filter. The filter chooses the applied scale factor
from a uniform distribution, which thus results in an approxi-
mately constant sample distribution.

5.1.6. Gaussian noise

When applying varying levels of Gaussian noise, the results
in Figure 12 show that the Spin Image and SHOT descriptor are
highly resistant. This may for the Spin Image be explained by
that the area (by proxy the number of sample points) does not
change much with higher levels of noise.

In the case of the QUICCI and RICI descriptor, the roughness
of the surface induces additional variations in number of inter-
section counts observed by the descriptor, reducing its ability to
discriminate. For the USC descriptor, only 900 000 results were
computed due to the descriptor experiencing excessive execu-
tion times.

5.1.7. Alternate mesh resolution
The final single filter experiment is applying the alternate

mesh resolution filter, whose results are shown in Figure 13.
For this filter, the centre of the sample object is placed at a ran-
domly selected distance from the camera. While the matching
performance for all methods is poor, the Spin Image appears to
be most resistant to the reduced reconstructed mesh resolution.

5.1.8. Summary
In order to gain an overview over how well each method per-

forms across the different filters, we computed a summary chart,
shown in Figure 14. We used a similar approach to the PRC
evaluation methodology, by computing the area underneath the
curve where DDI is 0. It should be noted that while perfor-
mance can be compared across methods within the same filter, it
does not directly translate between different filters, due to each
filter imposing different matching conditions on the scene. The
range of each independent variable was also selected arbitrar-
ily for each chart, and the area under the DDI curve represents
the extent to which a method has achieved good performance in
the entirety of that range. The intent of the chart is to highlight
cases where a method might perform better or worse relative to
the other tested methods.

The chart shows that the QUICCI and RICI descriptors are
clearly superior for cluttered environments. The performance
of the RoPS, SHOT, and USC descriptors in cluttered scenes
are not missing in this plot. The area described by their DDI
curves is small. QUICCI and RICI also perform well in oc-
cluded scenes –along with the Spin Image– but exhibit compar-
atively weak performance when confronted with various types
of noise, where the Spin Image, SHOT, and USC descriptors
excel. The only exception is deviations in the normal vector, to
which the Spin Image is sensitive.

5.2. Dual filter experiments
The dual filter experiments use a pipeline with two filters

each, and are thus capturing the effects of two independent vari-
ables. To visualise these, a 2D heatmap is used, which counts
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(f) USC

0 0.03 0.06 0.09 0.12 0.15
1
2
5

10
2
5

100
2
5

1000
2
5

10k
2
5 QUICCI

RICI
RoPS
SHOT
Spin Image
USC

Vertex displacement distance

Sa
m

pl
e 

Co
un

t

(g) Sample distribution

Fig. 9: Results for the alternate triangulation filter. Figure 9g shows the number of sample points per histogram bin.
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Fig. 10: Results for the deviated normal vector filter. The horizontal axis represents the angle by which the normal vector of the scene point was rotated. Figure 10g
shows the number of sample points per histogram bin.

the fraction of samples whose DDI is 0. If a bin has less than 5
samples, it is removed. Removed bins show a background grid
instead of a heatmap pixel.

The first of the tested dual filter pipelines is the clutter filter
followed by the occlusion filter, which is a common occurrence
in physical environments. The results of this experiment are
shown in Figure 15. We observe here that higher levels of clut-
ter have a self-occluding effect, limiting the observed level of
clutter in the final scene mesh.

For the configurations for which data is available, the USC,
RoPS, and SHOT descriptors show a poor capability of han-
dling any combination of occlusion and clutter. RICI appears
to perform best.

The final two configurations combine a clutter and occlusion
filter, with a Gaussian noise filter, respectively. The results for
the pipeline containing the clutter filter are shown in Figure 16,
and the results for the pipeline containing the occlusion filter in
Figure 17.

For the pipeline with the clutter filter, RICI shows the highest
performance across the tested methods, and maintains much of
this performance when higher intensities of Gaussian noise are
applied. In the case of the pipeline with the occlusion filter, the
Spin Image performs best out of of the tested descriptors.

6. Conclusion

The ShapeBench benchmark has been proposed, along with
the novel DDI metric as an extension to the popular AUCpr met-
ric. The DDI metric was shown to be more informative than
solely using the area under precision-recall curves, while si-
multaneously being insensitive to multiple occurrences. The
combination of the AUCpr and DDI yield an improved insight
in the expected performance of a local 3D shape descriptor than
each does individually.

The benchmark was used to test a range of descriptor meth-
ods, demonstrating their strengths and weaknesses under vari-
ous conditions. The replicability of the produced results, and
the public availability of the source code may both assist in

gaining a deeper understanding of previous work, as well as
the development and evaluation of new descriptor methods in
the future.

Our results show that the number of models and point sam-
ples used in the evaluations of previous work may not have
achieved a precision adequate to compare methods.

6.1. Future Work

While the presented benchmark includes a strategy for au-
tomatic selection of support radii, it is not necessarily opti-
mal. Human environments contain many shapes at varying
scales. For instance, a building viewed from the outside may
be roughly shaped as a cuboid, while on the inside contains
smaller shapes such as chairs and tables. It is possible to think
of a support radius as an indication of the expected scale of
shapes within, and algorithms estimating such scale should be
investigated. It may even prove necessary to create multiple
descriptors per keypoint.

The benchmark has also not investigated the effect of differ-
ent distance functions on the matching performance of different
descriptors.
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Fig. 11: Results for the support radius deviation filter. Figure 11g shows the number of sample points per histogram bin.
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Fig. 12: Results the Gaussian noise filter. Figure 12g shows the number of sample points per histogram bin.
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Fig. 13: Results the alternate mesh resolution filter. Figure 13g shows the number of sample points per histogram bin.
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Fig. 15: Results for the clutter filter followed by the occlusion filter.
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Fig. 17: Results for the occlusion filter followed by the Gaussian noise filter.
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Examples of filtered objects

(a) Original (b) Filtered

Fig. 18: Example output of the clutter filter.
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(a) Original (b) Filtered

Fig. 19: Example output of the occlusion filter.

(a) Original (b) Filtered

Fig. 20: Example output of the alternate triangulation filter.

(a) Original (b) Filtered

Fig. 21: Example output of the normal vector deviation filter.

(a) Original (b) Filtered

Fig. 22: Example output of the support radius deviation filter.

(a) Original (b) Filtered

Fig. 23: Example output of the Gaussian noise filter.

(a) Original (b) Filtered

Fig. 24: Example output of the alternate mesh resolution filter.

(a) Original (b) Filtered

Fig. 25: Example output of the clutter filter followed by the occlusion filter.

(a) Original (b) Filtered

Fig. 26: Example output of the clutter filter followed by the Gaussian noise
filter.

(a) Original (b) Filtered

Fig. 27: Example output of the occlusion filter followed by the Gaussian noise
filter.
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